Dr. Fabio Guolo

Clinica Ematologica, Dipartimento di Medicina Interna (DiN Università degli Studi di Genova IRCCS Ospedale Policlinico San Martino Genova

Guida all'uso delle nuove classificazioni nelle AML e MDS

Genomic Classification and Prognosis in Acute Myeloid Leukemia

With whole-genome sequencing, AML emerges as a **complex, dynamic disease.**

The disease evolves over time, with **multiple competing clones coexisting** at any time.

Patients typically have more than one driver mutation.

The structure of driver mutations identifies nonoverlapping subgroups of patients allowing a fully genomic classification of AML.

The prognostic effects of individual mutations were often significantly altered by the **presence or absence of other driver mutations**

Such **gene-gene interactions** were especially pronounced for NPM1-mutated AML, in which patterns of co-mutation identified groups with a favorable or adverse prognosis.

Papaemmanuil E, et al. The New England journal of medicine. 2016

• The old WHO 2016 classifications was partially genomic driven, however it did not reflect thelatest advances in the understanding of myeloproliferative neoplasms.

<u>To address this issues two new classifications were developed:</u>

The 5th edition of the **World Health Organization Classification** of Haematolymphoid Tumours: Myeloid and Histiocytic/Dendritic Neoplasms

Published: 22 June 2022 on Leukemia by Khoury JD et al.

International Consensus Classification of Myeloid Neoplasms and Acute Leukemias: integrating morphologic, clinical, and genomic data

Published: 15 September 2022 on *Blood* by Arber AD et al.

Khoury JD et al. Leukemia 2022 Arber AD et al. Blood 2022

AML: main changes in ICC 2022 from WHO 2016

2016 WHO CLASSIFICATION

Acute myeloid leukemia (AML) and related neoplasms

AML with recurrent genetic abnormalities

AML with t(8;21)(q22;q22.1);RUNX1-RUNX1T1

AML with inv(16)(p13.1q22) or t(16;16)(p13.1;q22);CBFB-MYH11

APL with PML-RARA

AML with t(9;11)(p21.3;q23.3);MLLT3-KMT2A

AML with t(6;9)(p23;q34.1);DEK-NUP214

AML with inv(3)(q21.3q26.2) or t(3;3)(q21.3;q26.2); GATA2, MECOM

AML (megakaryoblastic) with t(1;22)(p13.3;q13.3);RBM15-MKL1

Provisional entity: AML with BCR-ABL1

AML with mutated NPM1

AML with biallelic mutations of CEBPA

Provisional entity: AML with mutated RUNX1

AML with myelodysplasia-related changes

Therapy-related myeloid neoplasms

AML, NOS

2022 ICC CLASSIFICATION

- Acute promyelocytic leukemia (APL) with t(15;17)(q24.1;q21.2)/PML::RARA ≥10%
- APL with other RARA rearrangements^{*} ≥10%
- AML with t(8;21)(q22;q22.1)/RUNX1::RUNX1T1 ≥10%
- AML with inv(16)(p13.1q22) or t(16;16)(p13.1;q22)/CBFB::MYH11 ≥10%
- AML with t(9;11)(p21.3;q23.3)/MLLT3::KMT2A ≥10%
- AML with other KMT2A rearrangements^{**} ≥10%
- AML with t(6;9)(p22.3;q34.1)/DEK::NUP214 ≥10%
- AML with inv(3)(q21.3q26.2) or t(3;3)(q21.3;q26.2)/GATA2; MECOM(EVI1) ≥10%
- AML with other MECOM rearrangements*** ≥10%
- AML with other rare recurring translocations (see Supplemental Table 5) ≥10%
- AML with t(9;22)(q34.1;q11.2)/BCR::ABL1‡ ≥20%
- AML with mutated NPM1 ≥10%
- AML with in-frame bZIP CEBPA mutations ≥10%
- AML and MDS/AML with mutated TP53[†] 10-19% (MDS/AML) and ≥20% (AML)
- AML and MDS/AML with myelodysplasia-related gene mutations 10-19% (MDS/AML) and ≥20% (AML) o Defined by mutations in ASXL1, BCOR, EZH2, RUNX1, SF3B1, SRSF2, STAG2, U2AF1, or ZRSR2
- AML with myelodysplasia-related cytogenetic abnormalities 10-19% (MDS/AML) and ≥20% (AML)
- Defined by detecting a complex karyotype (≥3 unrelated clonal chromosomal abnormalities in the absence of other class-defining recurring genetic abnormalities), del(5q)/t(5q)/add(5q), -7/del(7q), +8, del(12p)/t(12p)/add(12p), i(17q), -17/add(17p) or del(17p), del(20q), and/or idic(X)(q13) clonal abnormalities
- AML not otherwise specified (NOS) 10-19% (MDS/AML) and ≥20% (AML)
- Myeloid Sarcoma
- New blast count to define AML: >10% for recurrent abnormalities
- t-MPNs and AML-MRC are elminated (now only noted as diagnostic qualifiers)
- AML with MDS related-gene mutations and cytogenetic abnormalities are introduced
- New MDS/AML introduced

Arber AD et al. Blood 2016 Arber AD et al. Blood 2022

Diagnostic qualifiers

Diagnostic qualifiers that should be used following a specific MDS, AML (or MDS/AML) diagnosis

Therapy-related

• prior chemotherapy, radiotherapy, immune interventions

Progressing from myelodysplastic syndrome

• MDS should be confirmed by standard diagnostics

Progressing from myelodysplastic/myeloproliferative neoplasm (specify)
MDS/MPN should be confirmed by standard diagnostics

Although the importance of **prior therapy**, **antecedent myeloid neoplasms** (ie, MDS or MDS/MPN), the classification now identifies such associations as **qualifiers** to the diagnosis rather than as specific disease categories

Arber DA, et al. Am J Hematol. 2022 Granfeldt-Øsgtård, LS et al. J Clin Oncol. 2015

Fianchi L, et al. Am J Hematol. 2015

AML with MDS-related changes has been eliminated in ICC 2022

while introducing three new categories:

- AML with MDS-related cytogenetic abnormalities defined by detecting a complex karyotype (≥ 3 unrelated clonal chromosomal abnormalities in the absence of other class-defining recurring genetic abnormalities),
 del(5q)/t(5q)/add(5q), -7/del(7q), +8, del(12p)/t(12p)/add(12p), i(17q), -17/add(17p) or del(17p), del(20q), and/or idic(X)(q13) clonal abnormalities
- AML with mutated *TP53*
- AML with MDS-related gene mutations: ASXL1, BCOR, EZH2, RUNX1, SF3B1, SRSF2, STAG2, U2AF1, or ZRSR2

Arber AD et al. Blood 2022

New category of *TP53* mutated MPNs

- This disease category encompasses separate diagnoses of MDS, MDS/AML, and AML with mutated TP53 (including pure erythroid leukemia), according to the blast percentage.
- These diseases are grouped together because of their overall similar aggressive behavior irrespective of the blast percentage, warranting a more unified treatment strategy across the blast spectrum.

Туре	Cytopenia	Blasts	Genetics
MDS with mutated TP53	Any	0-9% bone marrow and blood blasts	Multi-hit TP53 mutation* or <i>TP53</i> mutation (VAF > 10%) and complex karyotype often with loss of 17p†
MDS/AML with mutated TP53	Any	10-19% bone marrow or blood blasts	Any somatic TP53 mutation (VAF $>$ 10%)
AML with mutated TP53	Not required	≥20% bone marrow or blood blasts or meets criteria for pure erythroid leukemia	Any somatic TP53 mutation (VAF $>$ 10%)

• The presence of multihit TP53 mutations in cytopenic myeloid neoplasms corresponds to a highly aggressive disease with short survival.

Arber AD et al. Blood 2022

ICC 2022 requires a hierarchycal classification of AML

Arber AD et al. Blood 2022

MDS: main changes in ICC 2022 from WHO 2016

2016 WHO CLASSIFICATION

MDS with single lineage dysplasia	MDS with excess blasts in transformation
MDS with ring sideroblasts	Chronic myelomonocytic leukemia (CMML-1)
MDS with multilineage dysplasia	CMML-2
MDS with excess blasts-1	Atypical chronic myeloid leukemia, BCRABL1 negative
MDS with excess blasts-2	Chronic neutrophilic leukemia
MDS, unclassifiable	Juvenile myelomonocytic leukemia
MDS with isolated del(5q)	MDS/MPN unclassifiable
Refractory cytopenias of childhood	MDS/MPN with ring sideroblast and thrombocytosis

2022 ICC CLASSIFICATION

	Dysplastic lineages	Cytopenias	Cytoses*	BM and PB Blasts	Cytogenetics†	Mutations
MDS with mutated SF3B1 (MDS- SF3B1)	Typically ≥1‡	≥1	0	<5% BM <2% PB	Any, except isolated del(5q), –7/del(7q), abn3q26.2, or complex	SF3B1 (≥ 10% VAF), without multi-hit TP53, or RUNX1
MDS with del(5q) [MDS-del(5q)]	Typically ≥1‡	≥1	Thrombocytosis allowed	<5% BM <2% PB§	del(5q), with up to 1 additional, except –7/del(7q)	Any, except multi-hit TP53
MDS, NOS without dysplasia	0	≥1	0	<5% BM <2% PB§	-7/del(7q) or complex	Any, except multi-hit TP53 or SF3B1 (≥ 10% VAF)
MDS, NOS with single lineage dysplasia	1	≥1	0	<5% BM <2% PB§	Any, except not meeting criteria for MDS-del(5q)	Any, except multi-hit TP53;not meeting criteria for MDS- SF3B1
MDS, NOS with multilineage dysplasia	≥2	≥1	0	<5% BM <2% PB§	Any, except not meeting criteria for MDS-del(5q)	Any, except multi-hit TP53,; not meeting criteria for MDS- SF3B1
MDS with excess blasts (MDS-EB)	Typically ≥1‡	≥1	0	5-9% BM, 2-9% PB§	Any	Any, except multi-hit TP53
MDS/AML	Typically ≥1‡	≥1	0	10-19% BM or PB	Any, except AML- defining¶	Any, except NPM1, bZIP CEBPA or TP53

- MDS/AML introduced in substitution of previous MDS-EB2
- New MDS without displasia but with del(7) or del(7q) or complex karyotypeintroduced
- MDS with mutated SFR3B1 introduced
- MDS with ring sideroblasts removed

Arber et al. Blood 2016 Arber AD et al. Blood 2022

AML: main changes in WHO 2022 from WHO 2016

2016 WHO CLASSIFICATION

Acute myeloid leukemia (AML) and related neoplasms	
AML with recurrent genetic abnormalities	AML with d
AML with t(8;21)(q22;q22.1);RUNX1-RUNX1T1	AML with RUN
AML with inv(16)(p13.1q22) or t(16;16)(p13.1;q22);CBFB-MYH11	AML with CBFB
APL with PML-RARA	AML with RBM1
AML with t(9;11)(p21.3;q23.3);MLLT3-KMT2A	AML with BCR::
AML with t(6;9)(p23;q34.1);DEK-NUP214	AML with KM12 AML with MECO
AML with inv(3)(q21.3q26.2) or t(3;3)(q21.3;q26.2); GATA2, MECOM	AML with NUP9
AML (megakaryoblastic) with t(1;22)(p13.3;q13.3);RBM15-MKL1	AML with NPM1
Provisional entity: AML with BCR-ABL1	
AML with mutated NPM1	AML, myelodys
AML with biallelic mutations of CEBPA	AML with other
Provisional entity: AML with mutated RUNX1	
AML with myelodysplasia-related changes	AML define
Therapy-related myeloid neoplasms	AML with minim
AML, NOS	AML with matura
	Acute basophilic
	Acute myelomol

2022 WHO CLASSIFICATION

AML with defining genetic abnormalities	i
Acute promyelocytic leukemia with PML::RARA fusion	
AML with CDEDUAL/111 fusion	
AML with DEKWIUD214 fusion	
ANIL WITH DEK. NOP214 TUSION	
AML with RBM15.:MR1FA fusion	
AML with BCR::ABL1 fusion	
AML with KM12A rearrangement	
AML with MECOM rearrangement	
AML with NUP98 rearrangement	
AML with NPM1 mutation	AML with RUNX1T3::GLIS2 fusion
AML with CEBPA mutation	AML with KAT6A::CREBBP fusion
	AML with FUS::ERG fusion
AML, myelodysplasia-related	AML with MNX1::ETV6 fusion
	AML with NPM1::MLF1 fusion
AML with other defined genetic alterations	
AML defined by differentiation	
AML with minimal differentiation	
AML without maturation	
AML with maturation	
Acute basophilic leukemia	
Acute myelomonocytic leukemia	
Acute monocytic leukemia	
Acute erythroid leukemia*	
Acute megakanyoblastic leukomia	

- No blast cell count required for AML with defining genetic abnormalities
- More recurrent genetic abnormalities introduced
- AML with mutated *RUNX1* eliminated
- AML-MRC has been eliminated and AML MDS-related has been introduced (requires previous diagnosis of MDS or MDS-related cytogenetics)
- t-AML retained but as a qualifier

Khoury JD et al. Leukemia 2022

Myelodisplasia related AML

Requires (at least one of the following):

- Previous history of MDS or MPN :
- MDS-related Cytogenetic abnormalities: complex karyotipe, 5q deletions, 7 or 7q deletion, 11q deletion, 12p deletion, 13 or 13q deletion, 17p deletion, iso17q and idic(X)(q13)
- MDS-related genetic abnormalities: SRSF2, SF3B1, U2AF1, ZRSR2, ASXL1, EZH2, BCOR, STAG2

Defining cytogenetic abnormalities
Complex karyotype (≥3 abnormalities)
5q deletion or loss of 5q due to unbalanced translocation
Monosomy 7, 7q deletion, or loss of 7q due to unbalanced translocation
11q deletion
12p deletion or loss of 12p due to unbalanced translocation
Monosomy 13 or 13q deletion
17p deletion or loss of 17p due to unbalanced translocation
Isochromosome 17q
idic(X)(q13)
Defining somatic mutations
ASXL1
BCOR
EZH2
SF3B1
SRSF2
STAG2
U2AF1
ZRSR2

Also WHO 2022 requires a hierarchycal classification of AML

- - -

Classification hierarchy

Acute myeloid Leukemia

Chemotherapy ± Radiotherapy	Myeloid neoplasm post cytotoxic therapy (e.g. AML with <i>KMT2A::MLLT3</i> fusion post cytotoxic therapy))
MDS or MDS/MPN →	AML with defining genetic abnormalities Acute promyelocytic leukemia with <i>PML::RARA</i> fusion AML with <i>RUNX1::RUNX1T1</i> fusion AML with <i>CBFB::MYH11</i> fusion AML with <i>DEK::NUP214</i> fusion AML with <i>RBM15::MRTFA</i> fusion AML with <i>BCR::ABL1</i> fusion AML with <i>KMT2A</i> rearrangement AML with <i>MECOM</i> rearrangement AML with <i>NUP98</i> rearrangement AML with <i>NUP98</i> rearrangement AML with <i>CEBPA</i> mutation AML with <i>CEBPA</i> mutation AML, myelodysplasia-related AML with other defined genetic alterations	AML with <i>RUNX1T3::GLIS2</i> fusion AML with <i>KAT6A::CREBBP</i> fusion AML with <i>FUS::ERG</i> fusion AML with <i>MNX1::ETV6</i> fusion AML with <i>NPM1::MLF1</i> fusion
	AML defined by differentiation AML with minimal differentiation AML without maturation AML with maturation Acute basophilic leukemia Acute myelomonocytic leukemia Acute monocytic leukemia Acute erythroid leukemia* Acute megakaryoblastic leukemia	

*the only type in this family that supersedes AML-MR

MDS: main changes in WHO 2022 from WHO 2016

2016 WHO CLASSIFICATION

2022 WHO CLASSIFICATION

MDS with single lineage dysplasia	MDS with excess blasts in transformation		Blasts	Cytogenetics	Mutations
MDS with ring sideroblasts Chronic myelomonocy	Chronic myelomonocytic leukemia	MDS with defining genetic abnormalities			
	(CMML-1)	MDS with low blasts and isolated	<5% BM and <2% PB	5q deletion alone, or with 1 other	
MDS with multilineage dysplasia	CMML-2	5q deletion (MDS-5q)		abnormality other than monosomy 7 or 7q deletion	
MDS with excess blasts-1	Atypical chronic myeloid leukemia, BCRABL1 negative	MDS with low blasts and SF3B1 mutation ^a (MDS-SF3B1)		Absence of 5q deletion, monosomy 7, or complex karyotype	SF3B1
MDS with excess blasts-2	Chronic neutrophilic leukemia	MDS with biallelic TP53 inactivation (MDS-biTP53)	<20% BM and PB	Usually complex	Two or more TP53 mutations, or 1 mutation with evidence of TP53 copy
MDS, unclassifiable	Juvenile myelomonocytic leukemia				number loss or cnLOH
MADS with isolated dol/Eq)	MADS / MADNI up classificable	MDS, morphologically defined			
MDS with isolated dei(5q)	WDS/WPN unclassifiable	MDS with low blasts (MDS-LB)	<5% BM and <2% PB		
Refractory cytopenias of childhood	MDS/MPN with ring sideroblast and thrombocytosis	MDS, hypoplastic ^b (MDS-h)			
		MDS with increased blasts (MDS-IB)			
		MDS-IB1	5-9% BM or 2-4% PB		
		MDS-IB2	10-19% BM or 5-19% PB or Auer rods		
		MDS with fibrosis (MDS-f)	5-19% BM; 2-19% PB		
		"Detection of ≥15% ring sideroblasts may	substitute for SF3B1 mutati	on. Acceptable related terminology: MDS wi	th low blasts and ring sideroblasts.

^bBy definition, ≤25% bone marrow cellularity, age adjusted.

BM bone marrow, PB peripheral blood, cnLOH copy neutral loss of heterozygosity.

Denomination of Myelodisplastic Syndromes has been changed to Myelodisplastic Neoplasm (still abbreviated MDS though...)

- Distinction between MDS genetic defined and morphologically defined ٠
- Introduced MDS with biallelic TP53 inactivation ٠
- Introduced hypoplastic MDS ٠
- Introduced MDS with fibrosis ٠

Arber et al. Blood 2016 Khoury JD et al. Leukemia 2022

AML risk-stratification has been changed by ELN as well

Döhner H, et al. Blood. 2017 Döhner H, et al. Blood. 2022

AML: main differences between ICC 2022 and WHO 2022

	ELN 2022 & ICC 2022	WHO 5 th edition
MDS/AML (without AML defining genetic alterations)	10-19% blasts	Designated as MDS-IB2 (10-19% BM or 5-19% PB or Auer rods
AML with antecedent MDS, MDS/MPN, or prior exposure to therapy	Myelodysplasia added as a diagnostic qualifier	Included as a separate entity "AML-MR"
AML with NPM1 mutations, KMT2A rearrangement, MECOM rearrangement, and NUP98 rearrangement	Requires ≥10% blasts in BM or PB	Can be diagnosed irrespective of blast count
AML with <i>CEBPA</i> mutation	Requires ≥10% blasts in BM or PB Includes only bzip mutations	Requires ≥20% blasts in BM or PB Includes bi-allelic and bzip mutations
TP53 mutation	Included separately in the hierarchical classification	Not included as a separate entity for AML
Therapy related	Added as a diagnostic qualifier	Included as separate entity "AML-pCT"

Arber et al. Blood 2022 Khoury JD et al. Leukemia 2022

Differences in definitions of MR-AML

ICC 2022
Complex Karyotype
del(5q)/t(5q)/ add(5q)
-7/del(7q)
del(12p)/t(12p)/ add(12p)
i(17q), -17/ add(17p) , del(17p)
idic(X)(q13)
+8
del(20q)
TP53 mutated AML
ASXL1, BCOR, EZH2, RUNX1 , SF3B1, SRSF2, STAG2, U2AF1, ZRSR2

WHO 2022
Complex Karyotype
del(5q)/t(5q)
-7/del(7q)/ t(7q)
del(12p)/t(12p)
i(17q), -17, del(17p)
idic(X)(q13)
del(11q)
Previous history of MDS
SRSF2, SF3B1, U2AF1, ZRSR2, ASXL1, EZH2, BCOR, STAG2

Khoury JD et al. Leukemia 2022 Arber AD et al. Blood 2022

MDS: main differences between WHO 2022 and ICC 2022

ICC 2022 CLASSIFICATION

	Dysplastic lineages	Cytopenias
MDS with mutated SF3B1 (MDS- SF3B1)	Typically ≥1‡	≥1
MDS with del(5q) [MDS-del(5q)]	Typically ≥1‡	≥1
MDS, NOS without dysplasia	0	≥1
MDS, NOS with single lineage dysplasia	1	≥1
MDS, NOS with multilineage dysplasia	≥2	≥1
MDS with excess blasts (MDS-EB)	Typically ≥1‡	≥1
MDS/AML	Typically ≥1‡	≥1

2022 WHO CLASSIFICATION

	Blasts
MDS with defining genetic abnormalities	
MDS with low blasts and isolated 5q deletion (MDS-5q)	<5% BM and <2% PB
MDS with low blasts and SF3B1 mutation ^a (MDS-SF3B1)	
MDS with biallelic TP53 inactivation (MDS-biTP53)	<20% BM and PB
MDS, morphologically defined	
MDS with low blasts (MDS-LB)	<5% BM and <2% PB
MDS, hypoplastic ^b (MDS-h)	
MDS with increased blasts (MDS-IB)	
MDS-IB1	5-9% BM or 2-4% PB
MDS-IB2	10-19% BM or 5-19% PB or Auer rods
MDS with fibrosis (MDS-f)	5-19% BM; 2-19% PB

- No EB2 in ICC
- No MDS with hypoplasia or fibrosis in ICC
- No distinction in number of cytopenias in WHO
- Different approach to distinction of morphologically and genetically defined MDS

Arber et al. Blood 2022 Khoury JD et al. Leukemia 2022

Italian guidelines from Italian Society of Hematology

Tabella 1: Classificazione delle LAM secondo International Consensus Classification con la indicazione della percentuale di blasti necessaria per la diagnosi (da Arber DA, et al. Blood 2022)

LAM e SMD/LAM con mutazione di geni mielodisplasia-relati 10-19% (SMD/LAM) e ≥20% (LAM)
 Definita da mutazione di ASXL1, BCOR, EZH2, RUNX1, SF3B1, SRSF2, STAG2, U2AF1, o ZRSR2
LAM con alterazioni citogenetiche geni mielodisplasia-relate 10-19% (SMD/LAM) e ≥20% (LAM) Definita da: riscontri di cariotipo complesso (≥3 alterazioni citogenetiche clonali non correlate in assen
altre alterazioni genetiche ricorrenti caratteristiche); alterazioni citogenetiche del(5q)/t(5q)/add(5q), - 7/del(7q), +8, del(12p)/t(12p)/add(12p), i(17q), -17/add(17p) o del(17p), del(20q), e/o idic(X)(q13)
LAM non altrimenti specificata 10-19% (SMD/LAM) e ≥20% (LAM)
LAM con minima differenziazione
LAM senza maturazione LAM con maturazione
LAM basofilica
LAM mielomonocitica
LAM monocitica LAM eritroide
LAM megacarioblastica
Sarcoma mieloide

7/del(7q), +8, del(12p)/t(12p)/add(12p), i(17q), -17/add(17p) o del(17p), del(20q), e/o idic(X)(q13)
n altrimenti specificata 10-19% (SMD/LAM) e ≥20% (LAM)
LAM con minima differenziazione
LAM senza maturazione
LAM con maturazione
LAM basofilica
LAM mielomonocitica
LAM monocitica
LAM eritroide
LAM megacarioblastica
mieloide

Only ICC 2022 classifications is considered ٠

No clues on if MDS/AML should be treated as AML or MDS (but AML-like treatment historically has always been an option for EB2-٠ MDS)

ARTICLE OPEN

ACUTE MYELOID LEUKEMIA

AML classification in the year 2023: How to avoid a Babylonian confusion of languages

Sandra Huber¹, Constance Baer ^[b], Stephan Hutter¹, Frank Dicker¹, Manja Meggendorfer ^[b], Christian Pohlkamp¹, Wolfgang Kern ^[b], Torsten Haferlach ^[b], Claudia Haferlach ^[b] and Gregor Hoermann ^{[b] ^[M]}

- To evaluate the **impact of the new classifications** on AML diagnoses and ELN-based risk classification, 717 MDS and 734 AML non-therapy-related patients diagnosed according to the revised 4th WHO edition (WHO 2017) by whole genome and transcriptome sequencing were **analysed and stratified by ICC 2022 and WHO 2022**
- The incidence of re-stratification from old WHO 2016 to new ICC 2022 and WHO 2022 was evaluated
- The classification **differences** between **ICC 2022** and **WHO 2022** were analysed
- The prognostic relevance was evaluated in order to **disclose the impact in a real life scenario**

Huber S., et al. Leukemia 2023

Check for updates

From old to new

WHO 2022

- Myelodysplasia-related AML substantially increased from 22% (158/734) AML-MRC to 28% (208/746) AML-MR, mainly due to mutations in defining genes (44%, 92/208)
- 23% (36/158) former AML-MRC patients were not re-classified as AML-MR, mostly (96%) because of defining genetic abnormalities
- For MDS reclassification was a rare event (2% of patients)
- AML defined by morphology only was reduced from 13% (99/734) AML-NOS to 5% (36/746)

ICC 2022

- The new category of MDS/AML overlap was the largest change from WHO 2017 to ICC affecting 9% of all patients (most of the former EB-2 patients)
- Myelodisplasia related AML increased to a total of 193/746 (26% of AML cases). AML with MR gene mutations mainly composed former AML-MRC (n = 69), AML-NOS (n = 52) and AML-RUNX1 (n = 46).
- AML-NOS was reduced from 99 to 34 cases (5%)

Huber S., et al. Leukemia 2023

Differences between ICC and WHO 2022

в

Overall, there was a **large degree of agreement** between the WHO 2022 and the ICC classification **with 86%** (643/750) AML cases being assigned to **corresponding subgroups**.

68/107 (64%) patients reclassifed are due to the substitution in the ICC 2022 of **MDS EB2** present in WHO 2022 in favour of the new **MDS/AML**

The remaining 39 patients were constituted mostly by:

- TP53 mutated patients
- AML patients with a leukemia defining abnormalities but blast cells <10%

Huber S., et al. Leukemia 2023

- The prognostic value of the old WHO 2017 was similar to the new WHO 2022 and ICC 2022
- AML MRC in WHO 2017 (which included also morphology-only defined displasia) had not a better outcome than AML-MR (which was genetically or citogenetically defined) in the newer classifications

There was **no significant improvment** in prognostic stratification from applying the new **ELN 2022**

Huber S., et al. Leukemia 2023

In the era of new AML drugs, actionable target identification should be a routine undertaking not just at diagnosis, but also at the time of disease progression. Patients should be considered for their suitability for intensive vs. non-intensive therapy. Targeted therapies should be considered for actionable targets where available. For fitter patients in the absence of an actionable target, CPX-351 may be the preferred option for therapy and secondary AML and gemtuzumab ozogomicin could be considered for addition to conventional therapy, especially for patients with core-binding factor (CBF) AML. For patients not suitable for intensive chemotherapy, targeted and non-targeted treatment options are likely to be more widely utilized in the future in combination with low-dose ara-C (LDAC) or hypomethylating agents (HMA). *For patients in remission and not suitable for allogeneic HSCT, maintenance therapy may be considered for patients with FLT3 mutation. The efficacy of Midostaurin in this setting has not been proven in a dedicated randomized trial. **CC-486 may be a future option as maintenance therapy for patients ≥55 years in CR or CRi not eligible for hematopoietic stem cell transplant.

Conclusions

- Both the new ICC 2022 and WHO 2022 classification of AML recognize the **importance** of **genome-level diagnosis** in AML and MDS
- The importance of blast count is reduced in both classifications
- t-AML and MRC-AML became qualifiers in both classifications
- AML workup becomes more challenging for small centers
- Albeit there are **some differences** between **classifications**, but the **real clinical impact** is unlikely to be relevant (with the possibile exception of MDS/AML)
- A more complex risk assessment did not result into a better stratifications
- Given the availability of **targeted drugs**, probably the **assessment** of **actionable mutations** should be priorityzed

Acknowledgements

Clinic Of Hematology, Department of Internal Medicine (DiMI), University of Genoa IRCCS Ospedale Policlinico San Martino, Genoa, Italy

Head: Prof. R. M. Lemoli

Acute Leukemia Unit

Dr. P. Minetto Dr. F. Guolo Dr. C. Riva Dr. E. Maio Dr. M. Chies Dr. G. Zecchetti Dr. Y. Azzanelli

Molecular Biology and Cytogenetic Laboratory Dr. E. Carminati Dr. F. Pugliesi Dr. G. Fugazza Dr. C. Nurra

Flow Cytometry Unit

Dr. E. Tedone Dr. N. Colombo Dr. P. Contini Dr. R. Mangerini Dr. A. Parodi

