

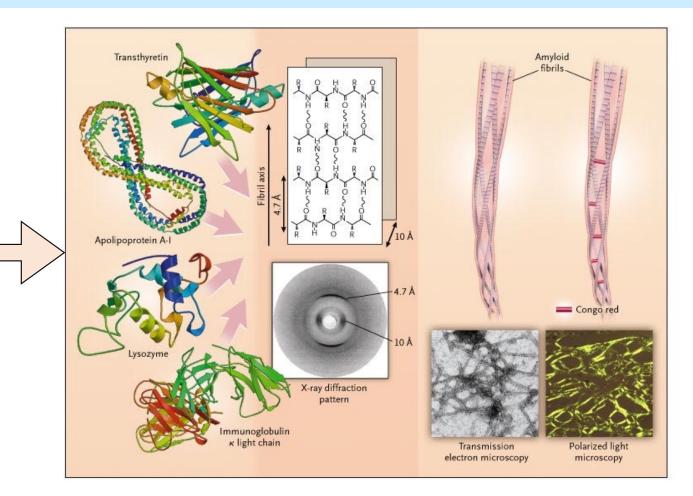
Approccio diagnostico e terapia dell'Amiloidosi nel 2023

Paolo Milani

Amyloidosis Research and Treatment Center - Foundation «IRCCS Policlinico San Matteo» Department of Molecular Medicine - University of Pavia - Pavia, Italy

Disclosures

- Jannsen-Cilag (Honoraria and Advisory Board) ٠
- Siemens (Advisory Board) ٠
- Pfizer (Honoraria) ٠
- Sebia (Honoraria) ٠



Sistema Socio Sanitario Regione Lombardia

Systemic amyloidoses: protein misfolding diseases

- Mutations
- Increased concentration (increased synthesis or reduced clearance)
- Intrinsic propensity (ageing)

Merlini & Bellotti NEJM 2003

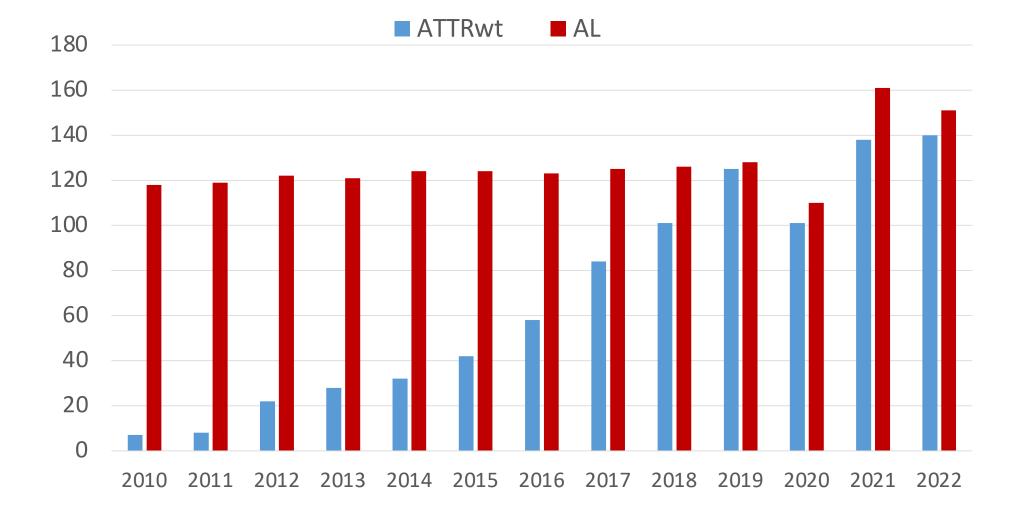
The main types of systemic amyloidosis have overlapping clinical presentations

	Precursor protein	Major organ involvement					
Amyloid Type		Heart (bone tracers uptake)	Kidney	Liver	PNS	ANS	ST
AL amyloidosis (acquired)	Immunoglobulin light chain	+++ (usually absent, can be intense)	+++	++	+	+	++
ATTRv amyloidosis (hereditary)	Mutated transthyretin	+++ (usually intense, can be absent in some variants)	-	-	+++	+++	-
ATTRwt amyloidosis (acquired)	Wild type transthyretin	+++ (usually intense)	-	-	-	-	+
ApoAl amyloidosis (hereditary)	Mutated apolipoprotein Al	+ (present)	+	+++	-	-	-
AA amyloidosis (acquired)	Serum amyloid A protein	+	+++	+	-	+	-
ALECT2 (acquired)	Leukocyte chemotactic factor 2	-	+++	+	-	-	-

Palladini, et al. Blood 2020

The main types of systemic amyloidosis have overlapping clinical presentations

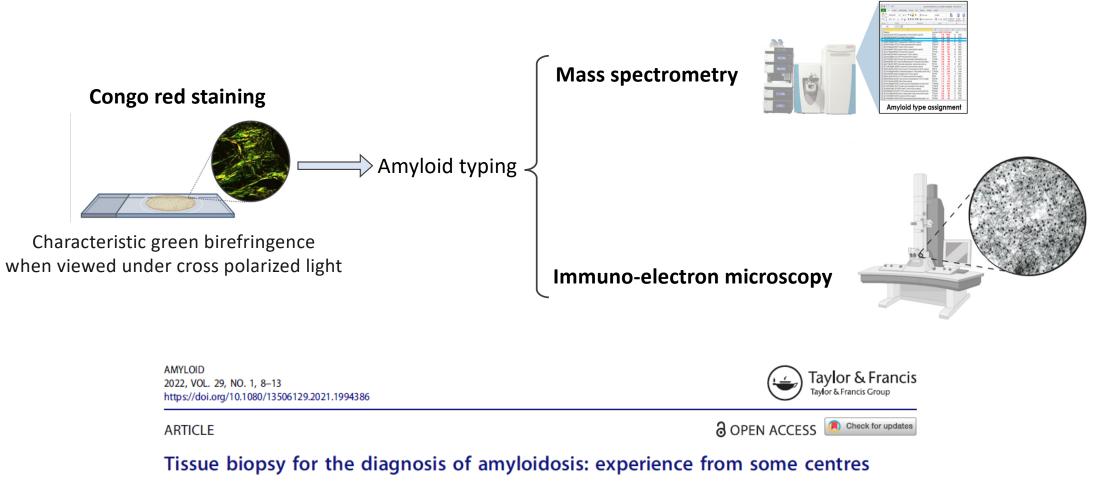
	Precursor protein	Major organ involvement					
Amyloid Type		Heart (bone tracers uptake)	Kidney	Liver	PNS	ANS	ST
AL amyloidosis (acquired)	Immunoglobulin light chain	+++ (usually absent, can be intense)	+++	++	+	+	++
ATTRv amyloidosis (hereditary)	Mutated transthyretin	+++ (usually intense, can be absent in some variants)	-	-	+++	+++	-
ATTRwt amyloidosis (acquired)	Wild type transthyretin	+++ (usually intense)	-	-	-	-	+
ApoAl amyloidosis (hereditary)	Mutated apolipoprotein Al	+ (present)	+	+++	-	-	-
AA amyloidosis (acquired)	Serum amyloid A protein	+	+++	+	-	+	-
ALECT2 (acquired)	Leukocyte chemotactic factor 2	-	+++	+	-	-	-


Palladini, et al. Blood 2020

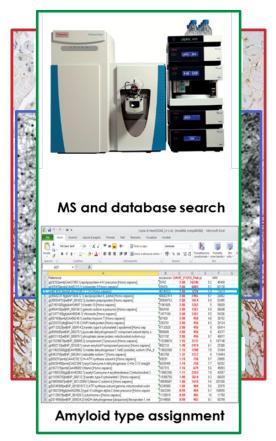
AL amyloidosis manifests with signs and symptoms of organ involvement ...

Nativi-nicolau et al. Heart Failure Rev 2022

Systemic amyloidosis in Pavia



A Diagnostic Algorithm for Cardiac Amyloidosis


Modified from Kittleson et al. JACC 2023

The Italian Amyloid Referral Center of Pavia approach

Merrill D. Benson^a, John L. Berk^b, Angela Dispenzieri^c , Thibaud Damy^d, Julian D. Gillmore^e, Bouke P. Hazenberg^f, Francesca Lavatelli^g, Maria M. Picken^h, Christoph Röckenⁱ, Stefan Schönland^j, Mitsuharu Ueda^k and Per Westermark^l

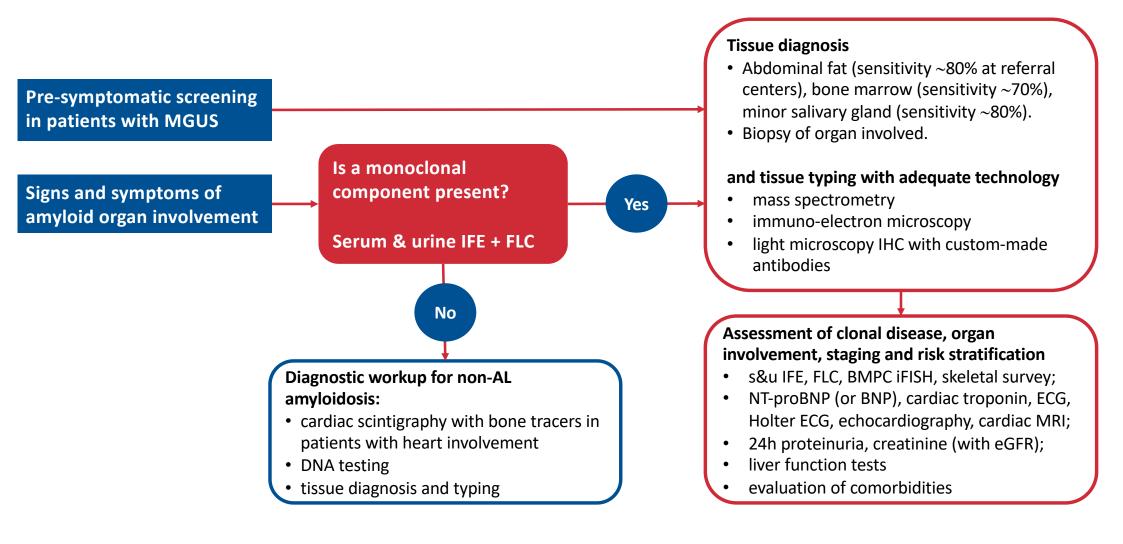
Amyloid typing

Typing – light microscopy immunohistochemistry

- X unreliable with commercial antibodies
- X correctly classifies 94% of patients with custom-made antibodies
- X not allowed by Italian Medicines Agency (AIFA) for prescriptions

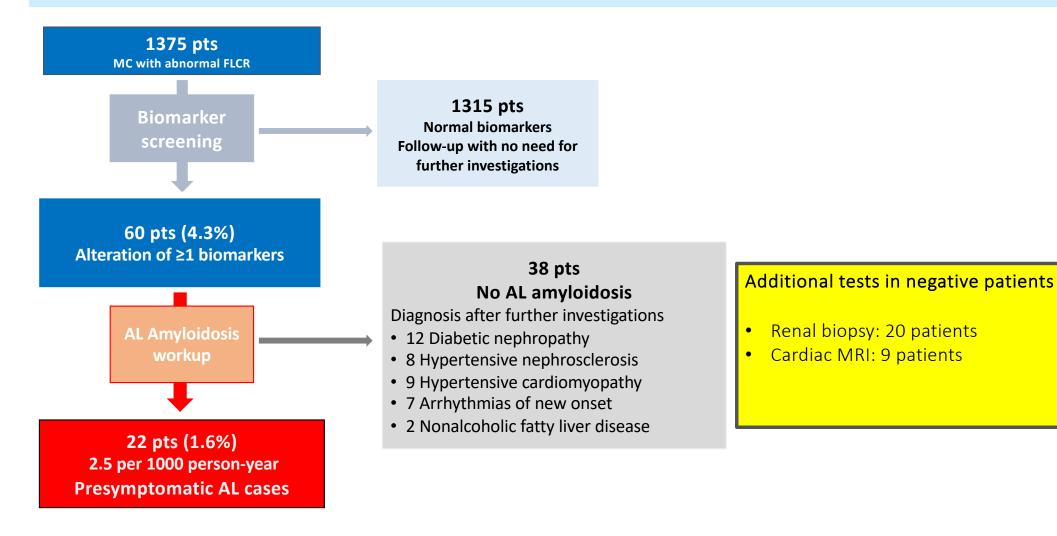
Typing – electron microscopy immunohistochemistry

correctly classifies >99% of patients with commercial antibodies


Typing – mass spectrometry

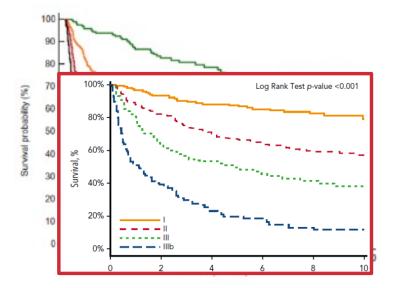
- ✓ laser capture microdissection, MudPIT
- not antibody dependent

Adequate technology and experience (high number of samples examined) are mandatory


Satoskar, et al. Am J Surgical Pathol 2011 Schönland, et al. Blood 2012 Fernandez de Larrea, et al. Blood 2015 Vrana, et al. Blood 2009 Brambilla, et al. Blood 2012 Benson, et al. Amyloid 2021

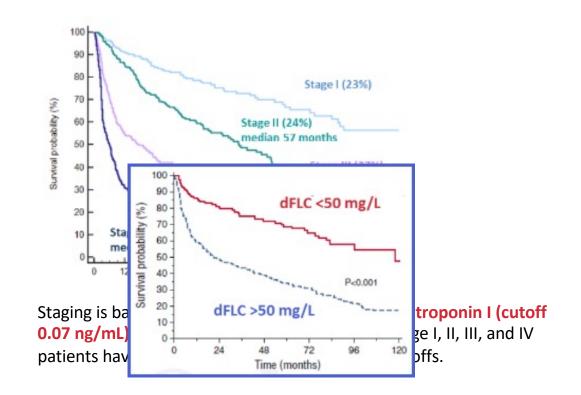
Diagnosis of systemic amyloidosis

Pre-symptomatic diagnosis of systemic AL amyloidosis by biomarker based screening in patients with MGUS

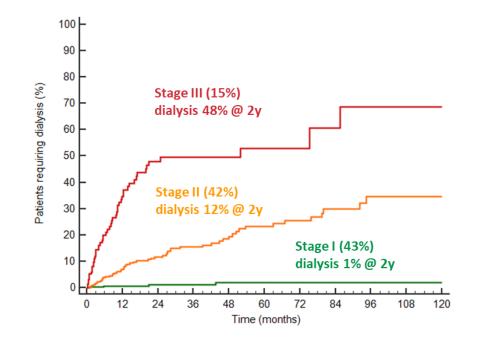

Mangiacavalli et al. ISA2022

Biomarkers in cardiac staging

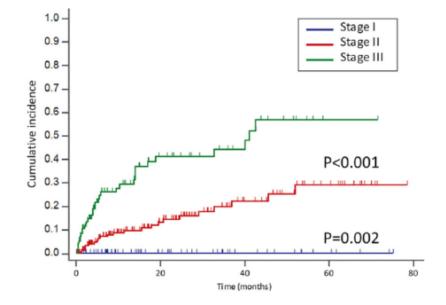
Mayo Clinic / European staging system


Revised Mayo Clinic staging system

Staging is based on BNP (cutoff 81 ng/L) and troponin I (cutoff 0.1 ng/mL) with stage I, II, and III patients having 0, 1, or 2 markers above the cutoffs.


Very high (>700 ng/L) BNP identifies patients with advanced cardiac dysfunction (Stage IIIb)

Dispenzieri, et al. JCO 2004 Wechalekar, et al. Blood 2013 Palladini, et al. Blood 2015 Lilleness, et al. Blood 2019 Kumar, et al. JCO 2012 Palladini, et al. Haematologica 2014



Milani, et al. Blood 2017 Dittrich, et al. Blood 2017 Sidana, et al. Leukemia. 2018

Biomarkers in renal staging

- Stage I: both proteinuria ${\leq}5g/24h$ and eGFR ${\geq}50$ mL/min per 1.73 m^2
- Stage II: either proteinuria >5g/24h or eGFR <50 mL/min per 1.73 m^2
- Stage III: both proteinuria >5g/24h and eGFR <50 mL/min per 1.73 m²

- Stage I: both UACR ${\leq}3600$ mg/g and eGFR ${\geq}50$ mL/min per 1.73 m^2
- Stage II: either UACR >3600 mg/g or eGFR <50 mL/min per 1.73 m²
- Stage III: both UACR >3600 mg/g and eGFR <50 mL/min per 1.73 m²

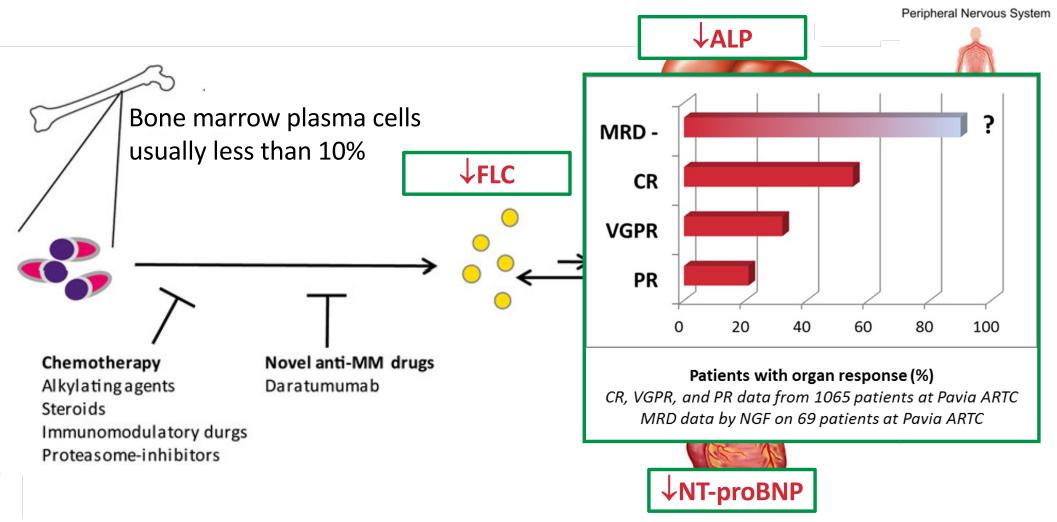
Palladini, et al. Blood 2014

Basset et al. CCLM 2022

iFISH cytogenetics in AL amyloidosis

Associations with clinical characteristics

Heidelberg data


- Translocation t(11;14) in 50%
 - Light chain only / Bence Jones type
- Hyperdiploidy in 11%
 - Kappa light chain restriction
 - Higher plasma cell infiltration of the bone marrow
 - Higher age at diagnosis and heavy chain type
- Overlap between t(11;14) and hyperdiploidy (2%)
- Gain of 1q21 in 20%
 - Higher plasma cell infiltration of the bone marrow
 - Lambda light chain restriction

Mayo Clinic data

- Translocation t(11;14) 39%
- Any Trisomy in 26%
 - Kappa isotype more frequent
 - Highest dFLC and BMPC at diagnosis
 - Higher age at diagnosis
- Overlap between t(11;14) and trisomies in (4%)

Bochtler, *et al. Blood* 2008 Bochtler, *et al. Blood* 2011 Muchtar, *et al. Leukemia* 2017 Bryce, et al. Haematologica 2009 Warsame, et al. Blood Cancer J 2015

AL amyloidosis: hematologic disease + organ damage

AL, amyloid light-chain; ALP, alkaline phosphatase; ARTC, Amyloidosis Research and Treatment Centre; CR, complete response; FLC, free-light chains; MRD, minimal residual disease; NGF, next-generation flow; NT-proBNP, N-terminal-pro-hormone brain natriuretic peptide; PR, partial response; VGPR, very good partial response

Adapted from Nuvolone & Merlini. NDT 2016;32(5):770-80

AMYLOID 2022, VOL. 29, NO. 1, 1–7 https://doi.org/10.1080/13506129.2021.2002841

GUIDELINE ARTICLE

Check for updates

Guidelines for high dose chemotherapy and stem cell transplantation for systemic AL amyloidosis: EHA-ISA working group guidelines

Vaishali Sanchorawala^a (D), Mario Boccadoro^b, Morie Gertz^c (D), Ute Hegenbart^d (D), Efstathios Kastritis^e, Heather Landau^f (D), Peter Mollee^g, Ashutosh Wechalekar^h and Giovanni Palladiniⁱ

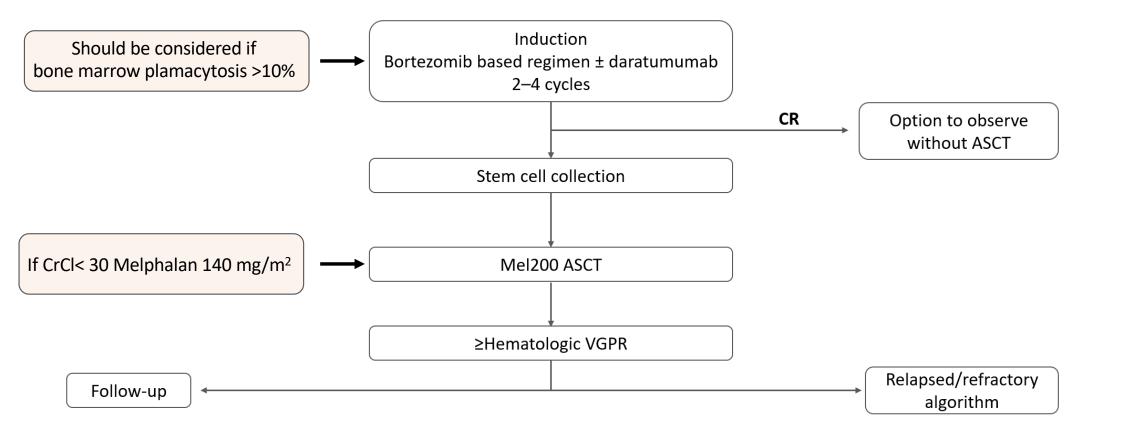
AMYLOID https://doi.org/10.1080/13506129.2022.2093635

GUIDELINE ARTICLE

Guidelines for non-transplant chemotherapy for treatment of systemic AL amyloidosis: EHA-ISA working group

Ashutosh D. Wechalekar^a, M. Teresa Cibeira^b (D), Simon D. Gibbs^c, Arnaud Jaccard^d, Shaji Kumar^e (D), Giampaolo Merlini^f, Giovanni Palladini^f, Vaishali Sanchorawala^g (D), Stefan Schönland^h (D), Christopher Vennerⁱ, Mario Boccadoro^j and Efstathios Kastritis^k (D)

Treatment selection in AL amyloidosis

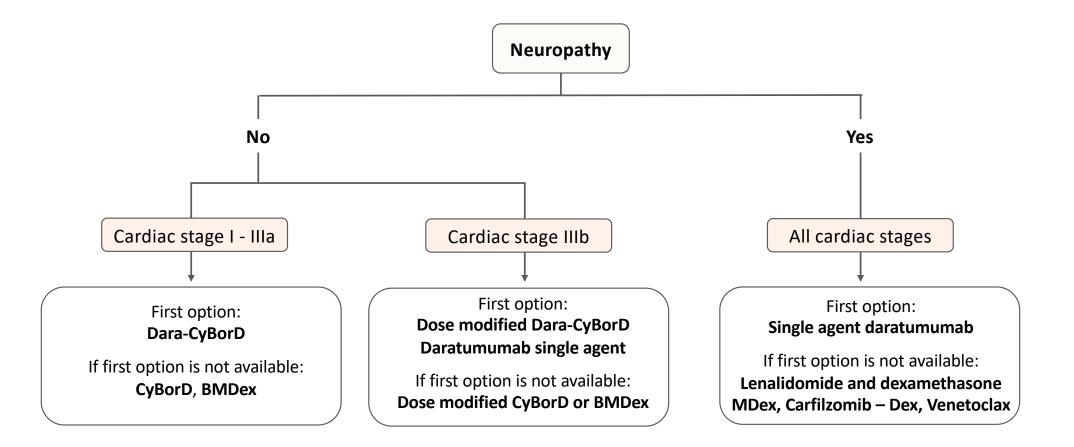

1. Assess eligibility for ASCT

ISA/EHA guidelines for ASCT eligible patients: eligibility criteria

Clinical evaluation	Inclusion criteria	Exclusion criteria
Age	• ≤65 years (patients aged 66-69 years can be considered at referral centers after careful multidisciplinary discussion).	-
Performance status	 Performance status (ECOG) 0-2 (unless caused by peripheral neuropathy). 	-
Blood pressure	 Supine systolic blood pressure ≥90 mmHg 	• Orthostatic hypotension refractory to medical therapy.
Heart assessment	 NYHA class I or II (if heart involvement is present). Ejection fraction by echocardiography ≥40%. Cardiac stage I or II (cardiac stage III patients can be considered at referral centers after careful multidisciplinary discussion). NT-proBNP <5000 ng/L. Troponin I <100 ng/L or troponin T <60 ng/L or hs-troponin T <75 ng/L 	 Symptomatic and/or medically refractory ventricular and atrial arrhythmias. Uncompensated heart failure.
Liver assessment	Direct bilirubin <2 mg/dL	-
Kidney assessment	 eGFR >50 mL/min per 1.73 m² (patients whose eGFR is between 50 and 30 mL/min can be considered at referral centers after careful multidisciplinary discussion). Patients on chronic and stable schedule of dialysis should not be excluded. 	_
Respiratory function	 Oxygen saturation ≥95% on room air. DLCO >50%. 	• Symptomatic and/or medically refractory pleural effusions.
Hemorrhagic risk assessment	-	 Factor X deficiency with factor X level of <25% or/and evidence of active bleeding. Extensive GI involvement with evidence of active GI bleeding or risk of bleeding.

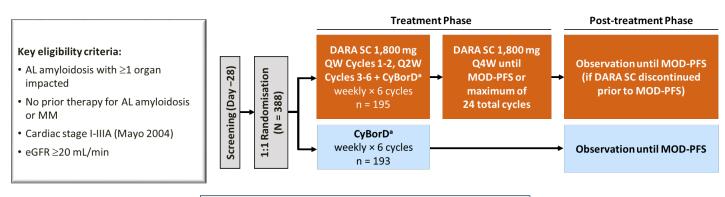
Sanchorawala, et al. Amyloid 2022

ISA/EHA guidelines for ASCT eligible patients


Sanchorawala, et al. Amyloid 2022

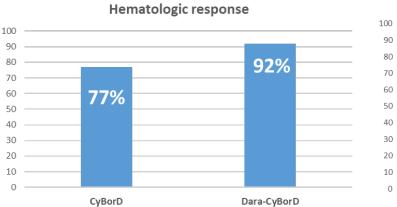
Treatment selection in AL amyloidosis

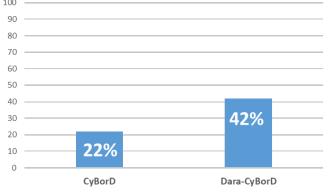
1. Assess eligibility for ASCT

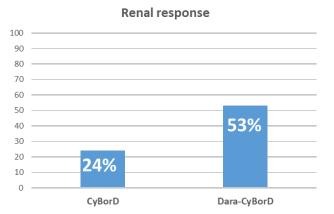

2. Assess specific comorbidities in subjects who are not transplant candidates

ISA/EHA guidelines for non-transplant chemotherapy

Wechalekar, et al. Amyloid 2022

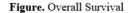

ANDROMEDA: a randomized, open-label, active-controlled, phase 3 study of DARA SC plus CyBorD vs CyBorD alone in newly diagnosed AL amyloidosis

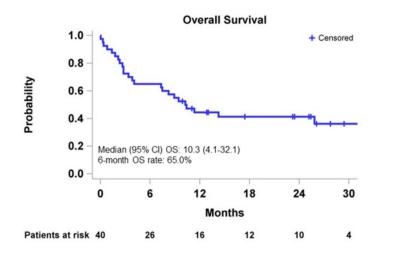



Stratification criteria:

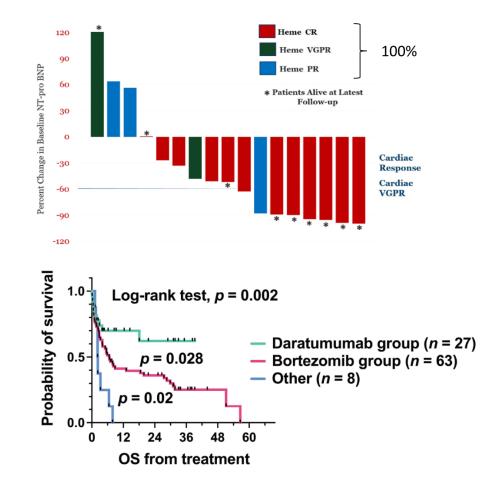
- Cardiac stage (I vs II vs IIIA)
- Transplant typically offered in local country (yes vs no)
- Creatinine clearance (≥60 mL/min vs <60 mL/min)</p>

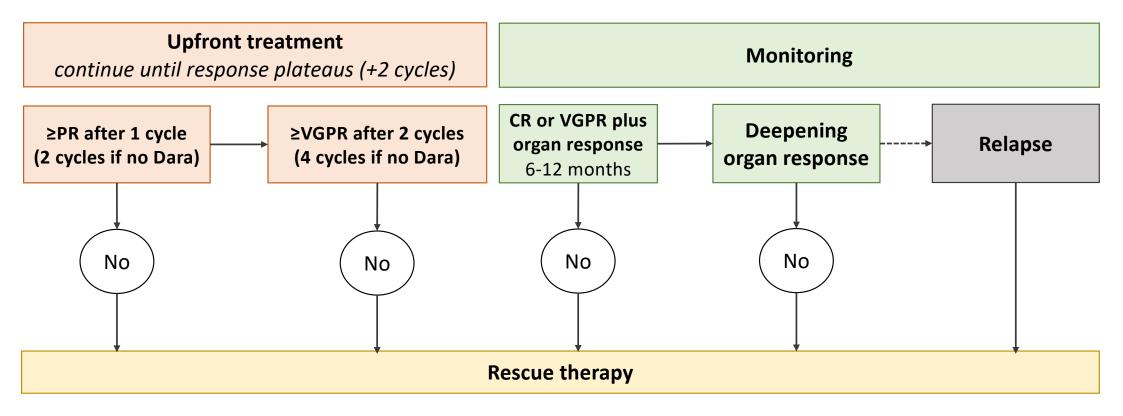
Cardiac response





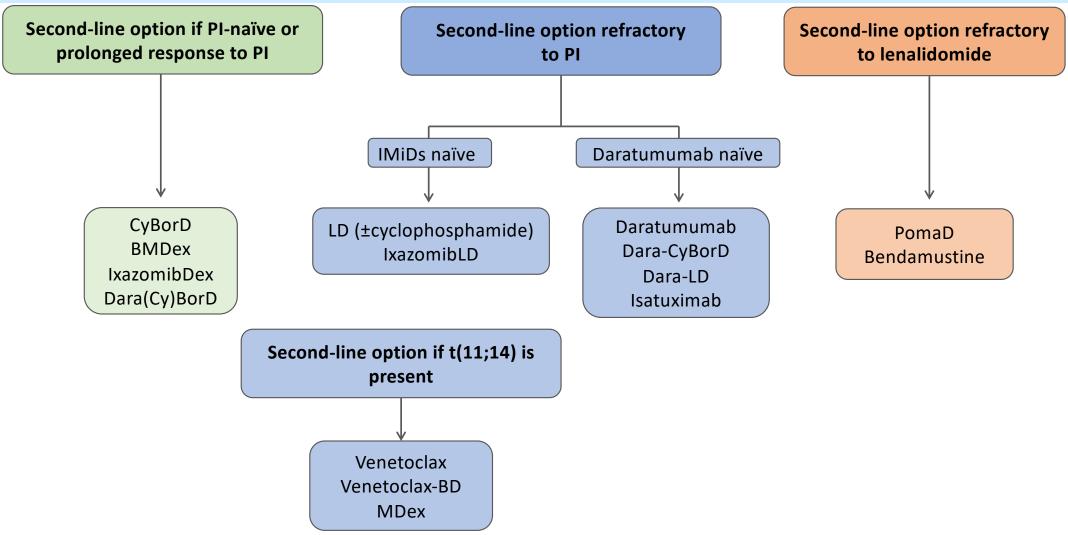
Kastritis, et al. NEJM 2021


Daratumumab combinations in stage IIIb patients


In high-risk (stage 3B) AL amyloidosis pts, dara monotherapy induced early and profound hematologic responses over 6 months with 77.5% of pts achieving more than PR and 50% VGPR/CR, and cardiac responses were seen in 27.5% of pts.

Kastritis, et al. ASH 2023 – oral abstract

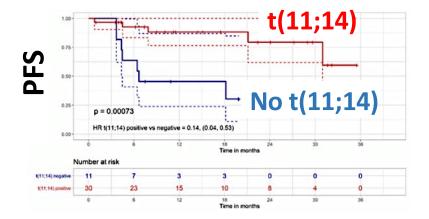
Chakraborty Br J Haematol 2023 Oubari, et al. Haematologica 2023


Tentative monitoring schedule during (and after) treatment

CR, complete response; dara, daratumumab; PR, partial response; VGPR, very good response

Adapted from Palladini & Milani. Curr Opinion Oncol 2022

ISA/EHA guidelines for non-transplant chemotherapy

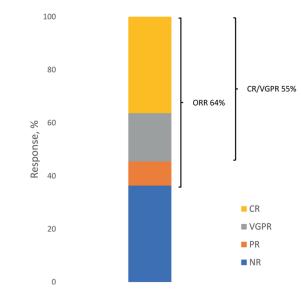

BD, bortezomib, dexamethasone; BMDex, bortezomib, melphalan, dexamethasone; CyBorD, cyclophosphamide, bortezomib, dexamethasone; Dara, daratumumab; IMiDs, immunomodulatory drug; PI, proteasome inhibitor; PomaD, pomalidomide, dexamethasone

Wechalekar et al. Amyloid 2022;1-15

Novel anti plasma cell agents in AL

Venetoclax in patients with t(11;14)

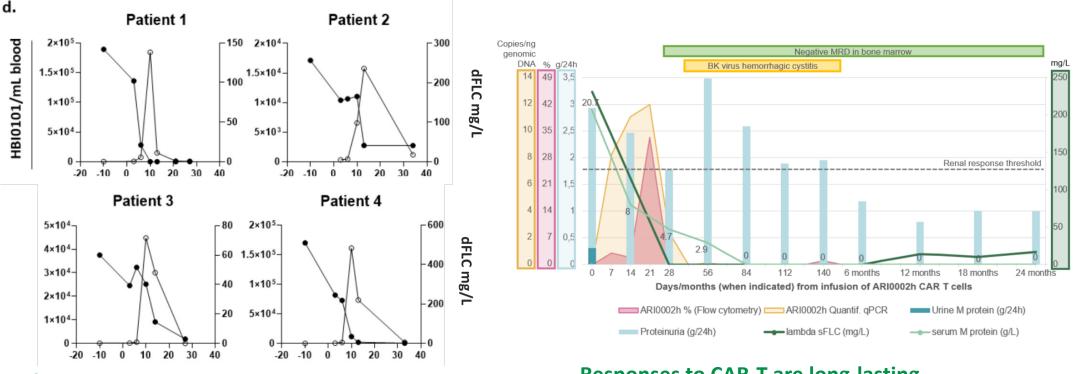
- VGPR/CR: 78%
- Effective after daratumumab



Premkumar, et al. Blood Cancer J 2021

• The overall hematologic response rate was 88%, 35% achieved a CR, and 35% achieved VGPR.

Lebel et al. Cancer 2023


Khwaja et al. Blood Cancer J 2022

- The overall response rate was 72.7% (8 pts; VGPR: 3 pts and PR: 5 pts).
- Four (36.4%) pts had ≥1 SAE, including 2 (18.2%) pts with a belamaf-related grade 2 and 4 visual impairment (1 [9.1%] pt each).

Kastritis et al. EHA2023 abstract

Novel anti plasma cell agents in AL

A novel academic BCMA-CART (HBI0101)

4/4 patients attained CR + organ response

Responses to CAR-T are long-lasting

538 Feasibility of a Novel Academic Anti-BCMA Chimeric Antigen Receptor T-Cell (CART) (HBI0101) for the Treatment of Relapsed and Refractory AL Amyloidosis Gatt et al. ASH23 – oral abstract

Kfir-Erenfeld, Asherie, et al. Clin Cancer Res 2022

Oliver-Caldes, et al. ISA 2022

- CAEL-101
 - Phase 1a/b: 27 pts, 63% had evidence of organ response
 - Phase 2: CAEL-101 dose 1000 mg/m² with CyBorD (+/- Dara)
 - No obvious impact on rate of hematologic responses
 - Organ responses in 2-7 months (heart 15/19, renal 9/9)

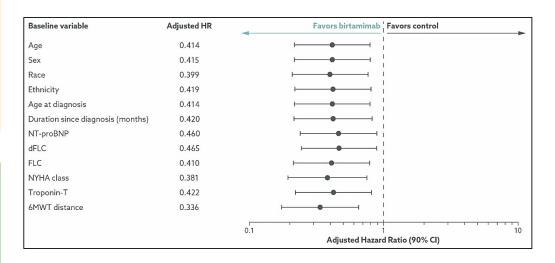
540 Safety and Tolerability of Cael-101, an Anti-Amyloid Monoclonal Antibody, Combined with Anti-Plasma Cell Dyscrasia Therapy in Patients with Light-Chain Amyloidosis: 24-Month Results of a Phase 2 Study.

Valent et al. ASH2023 – oral abstract

Valent et al. ASH2021 abstracts 468 & 482 Solomon, et al. Clin Cancer Res 2003 Edwards, et al. Blood 2021 A Study to Evaluate the Effectiveness and Safety of CAEL-101 in Patients With Mayo Stage IIIa AL Amyloidosis (NCT04512235) \rightarrow closed

A Study to Evaluate the Effectiveness and Safety of CAEL-101 in Patients With Mayo Stage IIIb AL Amyloidosis (NCT04504825) \rightarrow closed

Survival Benefit of Birtamimab in Mayo Stage IV AL Amyloidosis in the Phase 3 VITAL Study

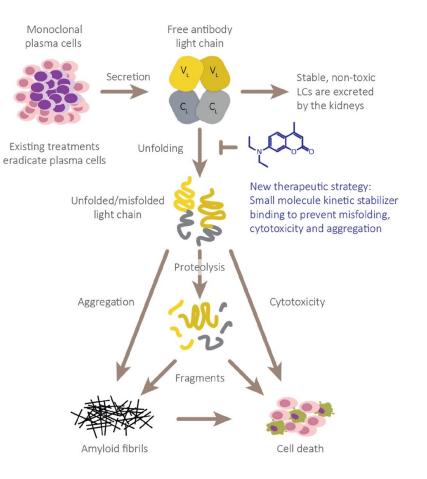

Results

- Of the 260 patients enrolled in the VITAL study, 77 (29.6%) were characterized as Mayo Stage IV at baseline, 38 randomized to birtamimab + SOC, and 39 to placebo + SOC
 - Patients had a median age of 64 years and were primarily white (93.5%) and male (68.8%)
 - Baseline demographic and clinical characteristics were generally balanced between the 2 treatment groups among these patients

Conclusions

- Birtamimab is the only investigational therapy that has shown a significant survival benefit in Mayo Stage IV AL amyloidosis patients
- The survival benefit of birtamimab was consistent across all key baseline variables, including demographic factors, clinical characteristics, and laboratory parameters

Forest Plot of Birtamimab Survival Benefit Adjusted for Key Baseline Variables for Patients With Mayo Stage IV AL Amyloidosis (ITT population [9 months])


A Study to Evaluate the Efficacy and Safety of Birtamimab in Mayo Stage IV Patients With AL Amyloidosis (AFFIRM-AL) (NCT04973137)

Gertz MA, et al. Blood 2023.

Other therapies

Light chain stabilizers

- Pharmacologic stabilization of native LCs could stop LC aggregation, potentially stopping disease progression
- Several classes of molecules have been identified as potential stabilizers

Morgan, et al. Proc Natl Acad Sci USA. 2019. Yan, et al. Bioorganic & Medicinal Chemistry Letters. 2020 Morgan et al Hemato 2021.

Conclusions

- Management of systemic amyloidosis where do we stand:
 - biomarkers allow early diagnosis, risk-adapted treatment design, and reliable assessment of response with validated criteria
 - ✓ daratumumab-CyBorD is a new standard of care in the majority of patients
- Much is left to do:
 - ✓ improve early diagnosis (education, screening programs)
 - ✓ define a standard-of-care for high-risk patients with AL amyloidosis
 - \checkmark validate a definition of hematologic progression
 - ✓ validate new sensitive technologies (MS, MRD) to assess response
 - ✓ newer anti-PC approaches
 - ✓ alternative treatment targets (LC stabilizers, doxycycline, anti-amyloid Abs)

Acknowledgments

Amyloidosis Research and Treatment Center

Founding/support

Giovanni Palladini Giampaolo Merlini Marco Basset Claudia Bellofiore Pietro Benvenuti Serena Caminito Chiara Corpina Andrea Foli Gianluigi Guida Margherita Massa Giulia Mazzini Martina Nanci Roberta Mussinelli Alice Nevone Mario Nuvolone Laura Obici Paola Rognoni Maria Antonietta Sesta Study Coordinators and data managers

Emergency Medicine Department

Stefano Perlini Francesco Salinaro

Nuclear Medicine Department

Giorgio Cavenaghi Gianluce De Matteis Lorenzo Lodola Giulia Manfrinato Fiorella Pepe

Hematology Unit

Luca Arcaini Claudio Cartia Silvia Mangiacavalli Marzia Varettoni

Cardiology Unit Stefano Ghio

Clinical Chemistry Laboratory

Riccardo Albertini Tiziana Bosoni

FC AECC and AIRC under the Accelerator Award Program

Cancer Research UK

