
L'ANTIGENE CD30 COME TARGET TERAPEUTICO NEI LINFOMI

UPDATE IN EMATOLOGIA GENOVA 19 DICEMBRE 2023

Dott. Andrea Todiere Clinica Ematologica

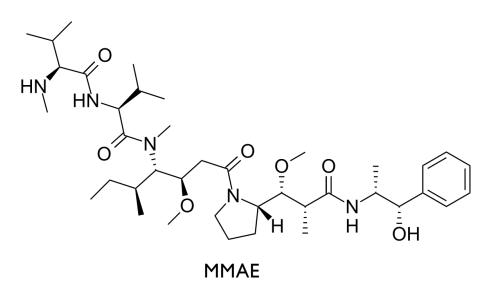
CD30 (TNFRSF8)

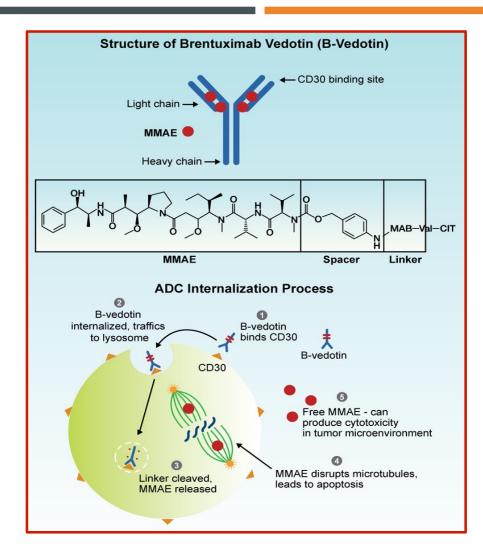
cytoplasm

BR J HAEMATOL, VOLUME: 201, ISSUE: 6, PAGES: 1033-1046, FIRST PUBLISHED: 11 MAY 2023, DOI: (10.1111/BJH.18841) VAN DER WEYDEN CA ET AL BLOOD CANCER J. 2017

PTCL	Proportion of patients with CD30 expression, % (n/total n of patients with lymphoma subtype)							
	CD30 cut-off	PTCL-NOS	AITL	ATLL	ENKTL	ALK- ALCL	ALK+ ALCL	EATL
Karube K et al. 2008 [122]	≥20%	11% (NS)	32% (NS)	24% (NS)	64% (NS)	58% (NS)		
Weisenburger DD et al. 2011 [123]	≥20%	32% (69/217)						
Sabattini E et al. 2013 [124]	≥25%	52% (45/87)	21% (9/42)		70% (7/10)			100% (9/9)
Bossard C et al. 2014 [125]	≥5%	58% (82/141)	63% (61/97)	56% (5/9)	46% (13/28)	100% (19/19)	100% (61/61)	50% (7/14)
Lamarque M et al. 2016 [126]	≥5%	90% (9/10)	100% (1/1)	0% (0/1)		100% (14/14)	56% (5/9)	100% (1/1)
Kawamoto K et al. 2018 [127]	≥25%				57% (55/97)			
Wang G-N et al. 2017 [128]	≥1%				70% (86/122)			
CTCL	CD30 cut-off	CTCL	MF	T-MF	SS			
Karube K et al. 2008 [122]	20-70%	9% (unknown)						
Sabattini E et al. 2013 [124]	≥25%		13% (4/32)	100% (9/9)				
Benner MF et al. 2012 [129]	>25%			47% (47/100)				
Klemke CD et al. 2015 [130]	≥5%				33% (11/49)			
B-cell lymphomas	CD30 cut-off	DLBCL						
Salas MQ et al. 2020 [114]	> 20%	19% (41/216)						
Rodrigues-Fernandes CI et al. [4]	> 20%	2.5-37% (NS)						
Slack GW et al. 2014	≥20%	12% (47/385)						

PRINCE HM, HUTCHINGS M, DOMINGO-DOMENECH E, EICHENAUER DA, ADVANI R. ANTI-CD30 ANTIBODY-DRUG CONJUGATE THERAPY IN LYMPHOMA: CURRENT KNOWLEDGE, REMAINING CONTROVERSIES, AND FUTURE PERSPECTIVES. ANN HEMATOL 2023 JAN


SUMMARY RESULTS OF PHASE I/II CLINICAL TRIALS TARGETING CD30


Drug	Disease	Antibody type	Phase	Number of evaluable patients	PR	CR	%PR + CR
MDX-060	HL, ALCL	Humanized	I	HL = 63	2	2	6%
				ALCL = 9	2	0	22%
SGN-30	HL, ALCL	Chimeric	I	24	0	0	0
HL, SGN-30	HL, ALCL	Chimeric	П	HL = 38	0	0	0
				ALCL = 41	5	2	17%
Xmab2513	HL	Humanized	I	13	1	0	7%
131I-Ki4	HL	Murine	I	22	5	1	27%

THE AURISTATINS – TUBULINE POLYMERASE INHIBITOR

The parent antintubulin agent Dolastatin 10 isolated from the Indian Ocean Dolabella Auricularia

In addition to BV's primary MOA non-clinical studies highlight other contributory mechanisms of action, including :

- Antibody dependent phagocytosis (ADCP)
- Bystander effects on nearby cells in the tumor microenvironment due to released MMAE
- Immunogenic cell death (ICD) due to endoplasmic reticulum (ER) stress that drives exposure of immune-activating molecules

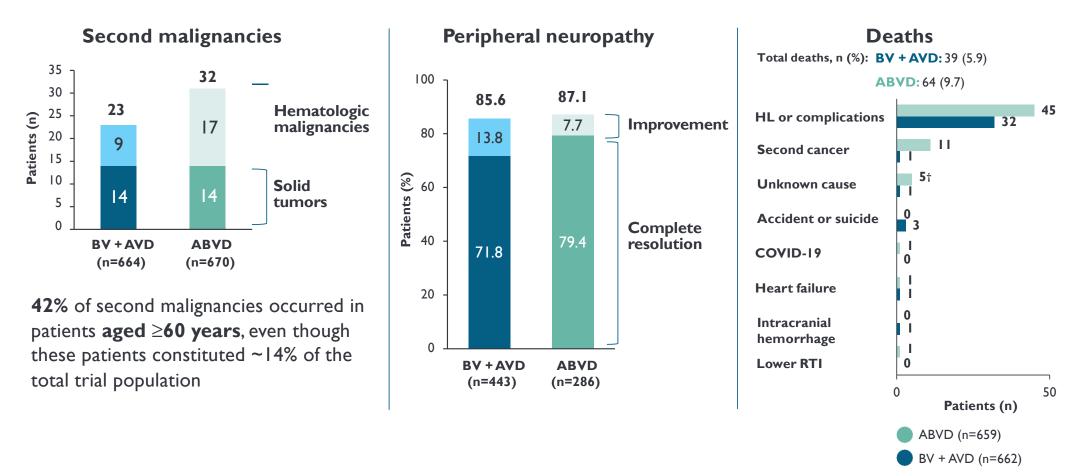
BRENTUXIMABVEDOTIN INDICAZIONI

HL

- in associazione con doxorubicina, vinblastina e dacarbazina (AVD) per pazienti adulti non precedentemente trattati affetti da linfoma di Hodgkin (HL) CD30+ in Stadio III o IV
- (trattamento di pazienti adulti affetti da HL CD30+ ad aumentato rischio di recidiva o progressione in seguito a trapianto di cellule staminali autologhe)
- trattamento di pazienti adulti affetti da linfoma di Hodgkin (HL) CD30+ recidivante o refrattario:
- I. in seguito ad ASCT, oppure
- 2. 2. in seguito ad almeno due precedenti regimi terapeutici, quando l'ASCT o la polichemioterapia non è un'opzione terapeutica.

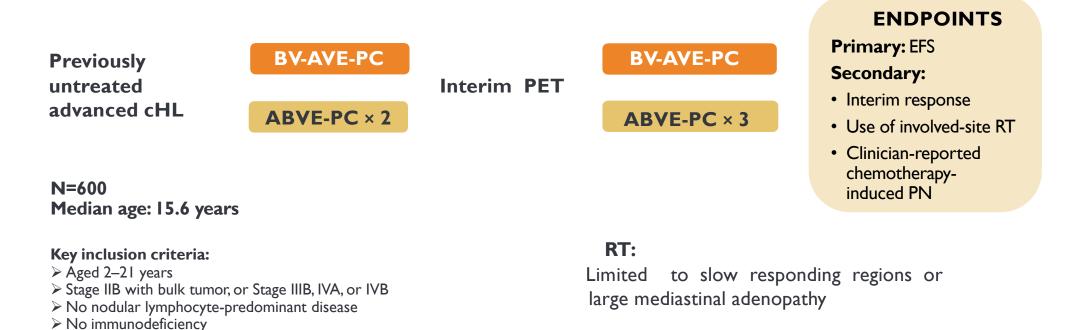
sALCL

- in associazione con ciclofosfamide, doxorubicina e prednisone (CHP) per pazienti adulti non precedentemente trattati
- trattamento di pazienti adulti affetti da sALCL recidivante o refrattario.

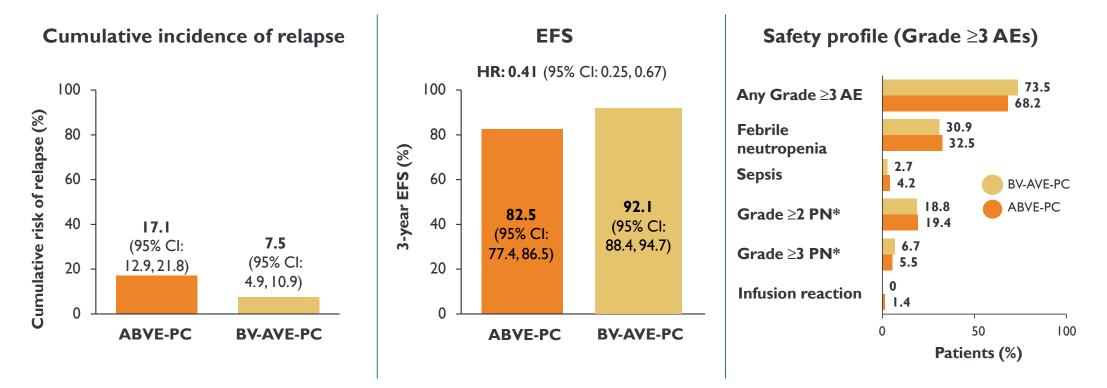

CTCL

trattamento di pazienti adulti affetti da linfoma cutaneo a cellule T (CTCL) CD30+ sottoposti ad almeno I precedente terapia sistemica

BV FOR THE FIRST LINE TREATMENT IN CHL: ECHELON I-PFS AND OS WITH BV + AVD VS ABVD



ECHELON-I: 6-YEAR SAFETY PROFILE WITH BV + AVD VS ABVD


AHOD 1331: BV-AVE-PC VS ABVE-PC IN PEDIATRIC PATIENTS

AHOD I 33 I : OPEN-LABEL, RANDOMIZED, PHASE 3 TRIAL OF BV-AVE-PC vs ABVE-PC IN PEDIATRIC PATIENTS WITH NEWLY DIAGNOSED HIGH-RISK cHL

CASTELLINO SM, ET AL. N ENGL J MED 2022;387:1649-60

AHOD 1331: SURVIVAL OUTCOMES AND SAFETY PROFILE

BV-AVE-PC demonstrated reduced relapse rates and improved EFS vs ABVE-PC in pediatric patients with cHL

*ABVE-PC, doxorubicin + bleomycin + vincristine + etoposide + prednisone + cyclophosphamide; AE, adverse event; BV-AVE-PC, brentuximab vedotin + doxorubicin + vincristine + etoposide + prednisone + cyclophosphamide; CI, confidence interval; EFS, event-free survival; HR, hazard ratio; PN, peripheral neuropathy

11

CASTELLINO SM, ET AL. N ENGL J MED 2022;387:1649-60

BRECADD: INVESTIGATIONAL FRONTLINE REGIMEN FOR HL

escBEACOPP	₩ ₽		BrECADD	REGIMEN CHANGES	RATIONALE		
Bleomycin	В	Br	BV	Omitted bleomycin	Reduce risk of bleomycin-induced pneumonitis		
10 mg/m ²			1.8 mg/kg	Added BV	Improve specificity of regimen to CD30-bearing HL cells		
Etoposide 200 mg/m ²	E		Etoposide 150 mg/m ²	Reduced dose	Reduce overall dose intensity of the polychemotherapy regimen, aiming to reduce risk of second malignancies (MDS and AML)		
Doxorubicin 35 mg/m ²	Α		Doxorubicin 40 mg/m ²	Moderately increased dose	Maintain cumulative effective chemotherapy dose in context of reduction in etoposide dose		
Cyclophosphamide 1,250 mg/m ²	С		Cyclophosphamide 1,250 mg/m ²	No changes	-		
Vincristine 1.4 mg/m ² (max. 2 mg)	0		_	Omitted	Vincristine MoA overlaps with that of MMAE (cytotoxic conjugate component of BV) Reduce risk of vincristine-associated Grade 3/4 polyneuropathies		
Procarbazine 100 mg/m ²	Ρ	D	Dacarbazine 250 mg/m ²	7-day procarbazine regimen replaced with 2-day dacarbazine regimen	Reduce risk of second malignancies (MDS and AML) Reduce gonadal toxicity		
Prednisone 40 mg/m ²	Ρ	D Dexamethasone 40 mg		I 4-day prednisone regimenreplaced by4-day dexamethasone	Reduce risk of serious infection during aplasia phase (Days 6–10 of each chemotherapy cycle)		

The BrECADD regimen is an investigational, rationally designed, CD30-intensified frontline regimen that aims to maintain the efficacy of escalated BEACOPP while reducing toxicity

BrECADD, brentuximab vedotin + etoposide + cyclophosphamide + doxorubicin + dacarbazine + dexamethasone; BV, brentuximab vedotin; CD30, cluster of differentiation 30; escBEACOPP, escalated bleomycin + etoposide + doxorubicin + cyclophosphamide + vincristine + procarbazine + prednisone

GERMAN HODGKIN STUDY GROUP. HD2 I STUDY PROTOCOL V8.0, JULY 202 I

HD21: GERMAN PHASE 3 TRIAL OF BRECADD VS ESCBEACOPP

Newly diagnosed cHL **BrECADD CO-PRIMARY BrECADD** × 2 cycles ENDPOINTS: × 2 cycles (PET2–) / × 4 cycles Interim RT 30Gy **S**elected inclusion criteria: Restaging PFS; PET/CT in PET treatment-related staging patients > Aged 18-60 years escBEACOPP escBEACOPP N=1,500 morbidity × 2 cycles (PET2–) / × 4 cycles > Stage IIB, III, and IV × 2 cycles **Toxicity profile** 100 escBEACOPP **Co-primary** BrECADD Patients (%) 80 endpoint 59 60 52 42 40 31 19 17 20 0 **Organ toxicity** Anemia, **Treatment-related** thrombocytopenia, **Grade** \geq **3** morbidity or infection Grade 4

RANDOMIZED, PHASE 3 TRIAL OF BrECADD VS escBEACOPP IN NEWLY DIAGOSED cHL

IBORCHMANN P, ET AL. ISHL 2022 [ABSTRACT #T002]; 2. CLINICALTRIALS.GOV, NCT02661503 (ACCESSED MAY 2023); 3. GERMAN HODGKIN STUDY GROUP. HD21 STUDY PROTOCOL V8.0, JULY 2021

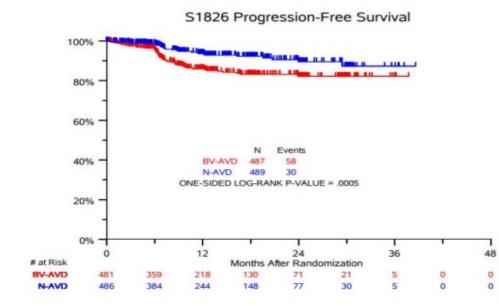
NCI/SWOG 1826 TRIAL OF NIVOLUMAB + AVD VS BV + AVD

RANDOMIZED PHASE 3 TRIAL OF NIVOLUMAB + AVD VS BV + AVD IN PATIENTS WITH NEWLY DIAGNOSED ADVANCED-STAGE CHL **Newly diagnosed cHL ENDPOINTS** RT to residual N=940 Primary: Secondary: FDG-avid areas in **BV + AVD** × 6 cycles • PFS patients with DS 4–5, EFS >30% reduction in OS max. transverse Nivolumab + AVD × 6 cycles CR diameter, and residual LN ≥2.5 cm* Safety and Stratification: tolerability > Age, IPS, EoT eligible

Key inclusion criteria: \triangleright Åged \geq 12 years

- ➤ Stage III–IV
- > Bidimensionally measurable disease

BV + AVD


BV 1.2 mg/kg on Days I and 15 Doxorubicin 25 mg/m² on Days I and I5 Vinblastine 6 mg/m² on Days I and I5 Dacarbazine 375 mg/m² on Days I and 15

Nivolumab + AVD

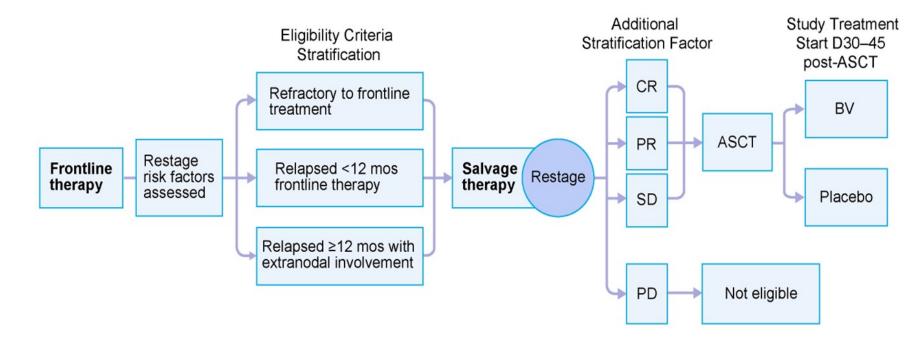
Nivolumab 240 mg on Days I and I5 Doxorubicin 25 mg/m² on Days I and I5 Vinblastine 6 mg/m² on Days I and I5 Dacarbazine 375 mg/m² on Days I and I5

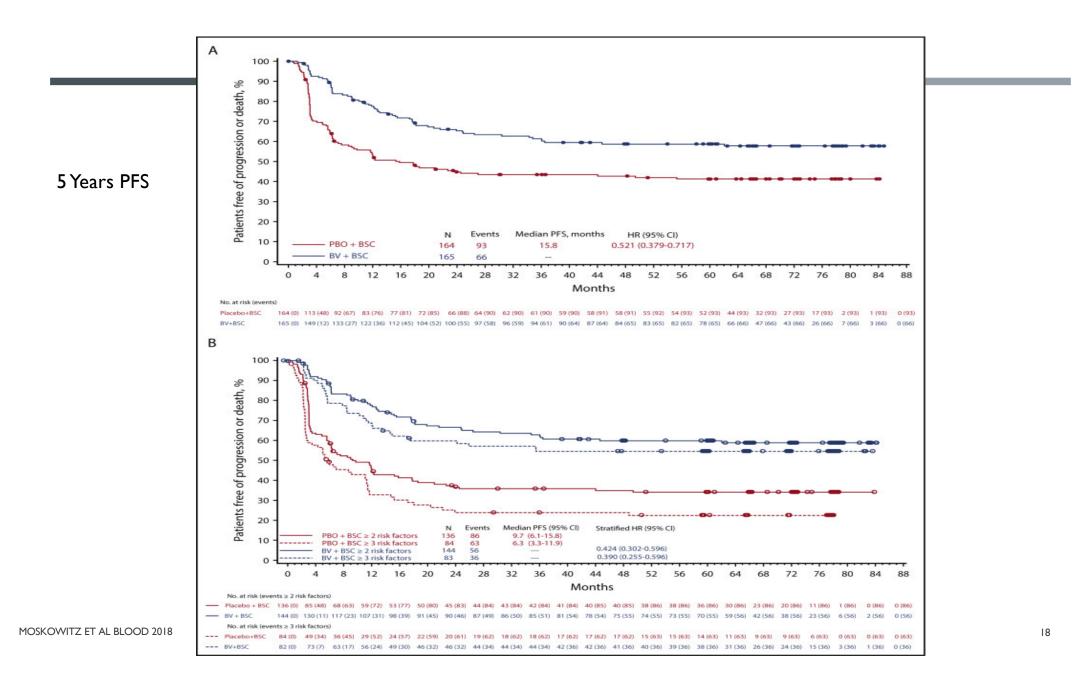
Nivolumab(N)-AVD Improves Progression-Free Survival Compared to Brentuximab Vedotin(BV)-AVD in Advanced Stage (AS) Classic Hodgkin Lymphoma (HL): Results of SWOG S1826

Herrera et al.

The 1-y PFS per ITT

N-AVD: 94%, versus BV-AVD: 86% [HR 0.48, 99% CI 0.27-0.87, one-sided p=0.0005)


Nota bene:


significance was reached at a 99% CI due to interim analysis

cons RTx was used only in very few patients

The AETHERA study

329 patients were randomised at 78 sites in North America and Europe

ALTERNATIVES TO CHOP AS INITIAL THERAPY IN PTCL

Results with CHOP as initial therapy for PTCL are generally poor, with few patients achieving CR or durable remission. However, several alternative strategies to CHOP have had limited success

ADDING ETOPOSIDE TO CHOP (CHOEP)

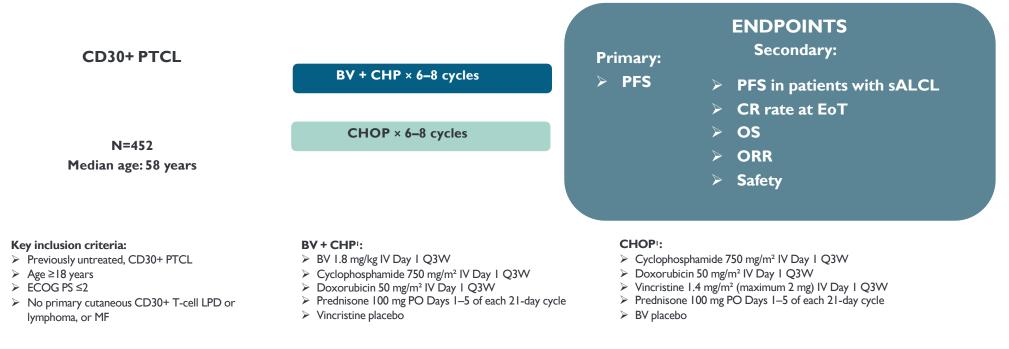
- Meta-analysis of five studies (N=1,560)¹
 - No difference in CR or
 - ORR with CHOP vs CHOEP
 - Significantly increased AEs with CHOEP vs CHOP

ADDING TARGETED AGENTS TO CHOP IN FRONTLINE

• Targeted agents include:

- Alemtuzumab
- Romidepsin
- Brentuximab vedotin
- Azacitidine
- Duvelisib

ASCT AS CONSOLIDATION


 No RCTs vs chemotherapy, although prospective studies showed promising results

. Deng S, et al. Onco Targets Ther 2019;12:2335-42;

HEMATOLOGIST 2021;18:5; 10. MEHTA-SHAH N, ET AL J CLIN ONCOL 2022;40:16; 11. REIMER P. ADV HAEMATOL 2010;2010:320624

ECHELON-2:TRIAL DESIGN

PLACEBO-CONTROLLED, DOUBLE-BLIND, GLOBAL, PHASE 3 TRIAL TO COMPARE THE EFFICACY AND SAFETY OF BV + CHPVS SoC CHOP IN PATIENTS WITH PREVIOUSLY UNTREATED CD30+ PTCL

BV + CHP, brentuximab vedotin + cyclophosphamide + doxorubicin + prednisone; CD30, cluster of differentiation 30; CHOP, cyclophosphamide + doxorubicin + vincristine + prednisone; CR, complete response;

ECOG PS, Eastern Cooperative Oncology Group performance score; Eo T, end of treatment; IV, intravenously; LPD, lymphoproliferative disorder; MF, mycosis fungoides; ORR, objective response rate; OS, overall survival; PFS, progression-free survival; PO, orally; PTCL, peripheral T-cell lymphoma; Q3W, every 3 weeks; R, randomization; sALCL, systemic anaplastic large cell lymphoma; SoC, standard of care

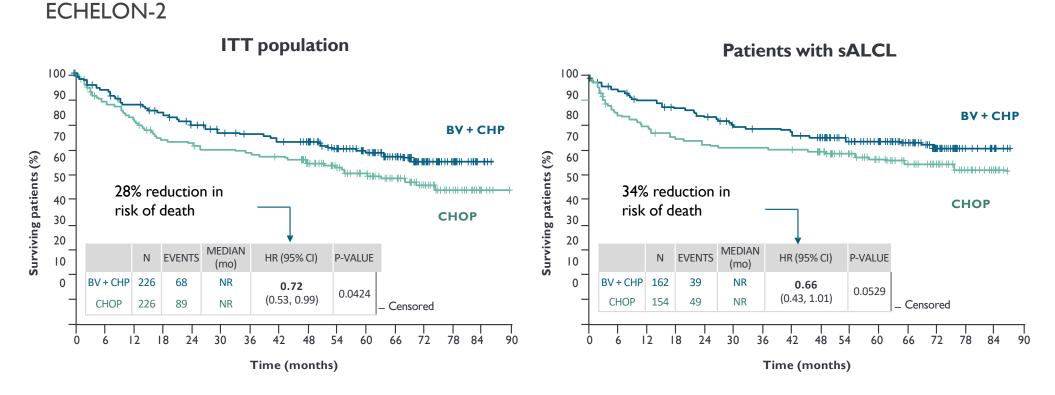
HORWITZ S, ET AL. LANCET 2019;393:229-40; 2. CLINICALTRIALS.GOV, NCT01777152 (ACCESSED MAY 2023)

ECHELON-2 PRIMARY ENDPOINT: PFS

PFS in **ITT** population

30% reduction in the risk of progression events was observed with BV + CHP vs CHOP with long-term follow-up (median follow-up: 66.8 mo)

N at risk (events)


 BV + CHP
 226 (0)
 179 (36)
 150 (62)
 138 (72)
 123 (78)
 104 (81)
 85 (85)
 67 (88)
 44 (89)
 31 (91)
 21 (92)
 10 (94)
 4 (94)
 2 (94)
 0 (94)

 CHOP
 226 (0)
 159 (63)
 128 (94)
 116 (103) 101 (112)
 94 (115)
 79 (117)
 70 (118)
 55 (119)
 39 (119)
 24 (121)
 6 (125)
 0 (125)
 0 (125)
 0 (125)

Figure adapted from Horwitz S, et al

BV + CHP, brentuximab vedotin + cyclophosphamide + doxorubicin + prednisone; CHOP, cyclophosphamide + doxorubicin + vincristine + prednisone; CI, confidence interval; HR, hazard ratio; ITT, intent-to-treat; PFS, progression-free survival

HORWITZ SM, ET AL. ANN ONCOL 2022;33:288-98

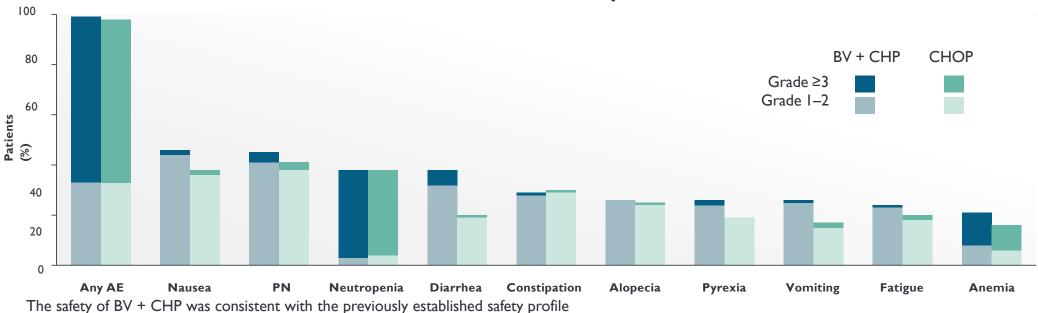

Significant improvement in OS was observed through 5 years in the ITT population, with a numerical OS improvement in the sALCL subgroup

Figure adapted from Horwitz S, et al,

BV + CHP, brentuximab vedotin + cyclophosphamide + doxorubicin + prednisone; CHOP, cyclophosphamide + doxorubicin + vincristine + prednisone; CI, confidence interval; HR, hazard ratio; ITT, intent-to-treat; NR, not reached; OS, overall survival; sALCL, systemic anaplastic large cell lymphoma

HORWITZ SM, ET AL. ANN ONCOL 2022;33:288-98

ECHELON-2: SAFETY PROFILE

Adverse events in \geq 20% of patients

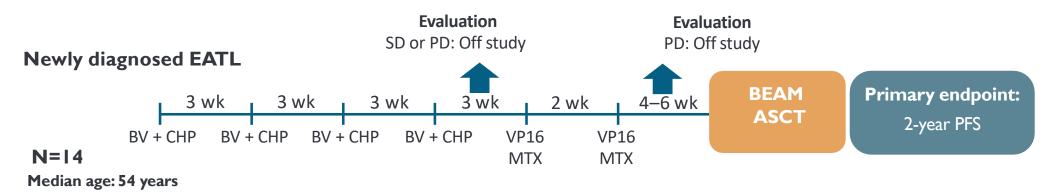
Rate and severity of neutropenia were similar with BV + CHP and CHOP, and lower in the subgroup of patients receiving primary prophylaxis with G-CSF

Rate and severity of febrile neutropenia were also similar with BV + CHP and CHOP

BV + CHP continued to have a manageable safety profile at 5 years; similar resolution of PN was seen in both arms

HORWITZ S, ET AL. LANCET 2019;393:229-40; 2. ANSELL SM, ET AL. N ENGL J MED 2022;387:310-20; 3. HORWITZ SM, ET AL. ANN ONCOL 2022;33:288-98

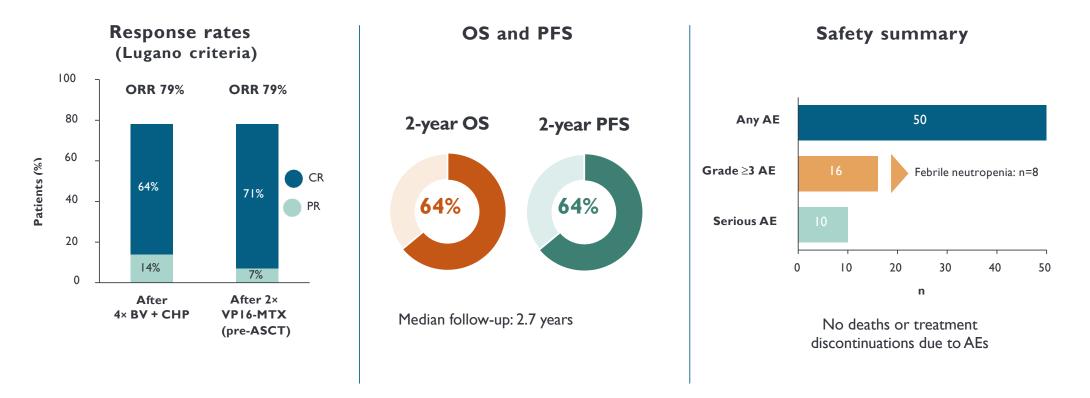
	Ever	nt/N			
ITT subgroups	BV + CHP	СНОР			HR (95% CI)
Overall survival	68/226	89/226	∎		0.72 (0.53, 0.99)
Disease indication					
ALK-positive sALCL	5/49	10/49 ⊢			0.48 (0.16, 1.40)
ALK-negative sALCL	34/113	39/105	├ ─── ─		0.71 (0.44, 1.12)
ATLL	2/4	3/3		———————————————————————————————————————	0.70 (0.11, 4.27)
AITL	12/30	8/24	├		1.01 (0.40, 2.55)
EATL	1/1	2/2			Not estimable
PTCL-NOS	14/29	27/43	├		0.75 (0.37 <i>,</i> 1.48)
sALCL	39/162	49/154	├₩		0.66 (0.43, 1.01)
Non-sALCL	29/64	40/72	├■		0.76 (0.46, 1.23)
		0.1	0.5 1	10	_
		BV	+ CHP better	CHOP better	→


ECHELON-2: 5-year survival by disease indication subgroup

Note: Patient numbers were small in many subgroups. The study was not powered to compare efficacy between individual histologic subtypes, and small subgroup sizes preclude definitive determination of the treatment effect in the non-ALCL population

Trends for improved response with BV + CHP vs CHOP were observed across most disease indication subgroups

BRENTUXIMAB IN EATL

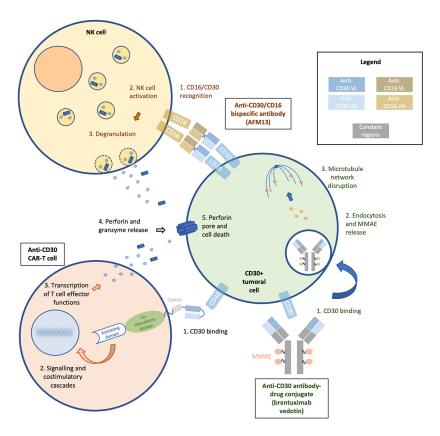

EATL-001: A PROSPECTIVE PHASE 2 TRIAL (SIBON D, ET AL. BLOOD 2021;138[SUPPL 1]:136)

Key inclusion criteria:

- > Pathologically confirmed newly diagnosed EATL
- CD30+ (≥10% of neoplastic cells by central review)
- > Aged 18-65 years
- ➢ ECOG PS 0−3

Median follow-up: 2.7 years

Indirect comparison with historical controls suggest promising survival outcomes vs existing treatments


CAR-T

- Phase I/II study, 41 patients with R/R HL treated with second-generation anti-CD30 CAR-T cells Lymphodepletion regimens bendamustine, bendamustine + fludarabine or cytarabine + fludarabine. No overall response was detected in any of the patients with active disease who underwent lymphodepletion with bendamustine alone. Patients with the evaluable disease who received fludarabine-based lymphodepletion had high rates of durable responses, with an ORR of 72%, including a CR in 59% of these patients, and the oneyear PFS was 41% (Ramos et Al.)
- I8 patients with R/R HL PR was achieved in 39% of patients and stable disease was achieved in 33%

BISPECIFIC ANTIBODIES (BSABS)

- A bispecific antibody (bsAb) against CD30/CD16 (murine anti-CD30 HRS3 Ab conjugated with the anti-CD16 A9 Ab) was developed, with one arm reportedly binding the CD30 antigen, and the other recruiting NK by binding the CD16 receptor. In clinical trials in humans, nine of the 15 patients with refractory HL treated with HRS-3/A9 every 3–4 days (1 mg/m² to 64 mg/m²/infusion) developed anti-drug antibodies (ADA) that may compromise the efficacy and impact the safety profile. Indeed, four patients suffered allergic reactions on reinfusion and were excluded from further treatment. Complete and partial remission was observed in one patient each.
- AFM13, a first-in-class tetravalent bispecific antibody with two binding sites for CD30 and two for CD16 (anti-CD30 Ab derived from the murine HRS-3 and human anti-CD16a Abs;
- AFM13 was studied in a phase I dose-escalation study (AFM13-101) in 28 patients with heavy prior treatment for R/R CD30+ HL. AFM13 was infused weekly for 4 weeks, at doses of 0.01–7 mg/kg. Adverse events were generally mild to moderate.

The best clinical response was a PR, observed in only 11.5% of patients. Following the administration of AFM13 at a dose of \geq 1.5 mg/kg, the ORR was 23% and the overall disease control rate was 77% in subjects with heavy prior treatment. ADA was detected in 15 of 28 patients, and they had the potential to neutralize the treatment in 50% of cases.

GRAZIE PER L'ATTENZIONE

