

ROBERTO SANTI

Gestione del rischio trombotico ed emorragico nel paziente oncoematologico

Disclosures

No relevant conflicts of interest to declare related to this presentation

Azienda Ospedaliera SS. Antonio e Biagi Alessandria

Table 2. Risk of Venous Thrombosis per Type of Malignancy for Patients With a Diagnosis of
Malignancy Within 5 Years Before Diagnosis of Venous Thrombosis

Type of Malignancy		No. of Control Participants	Odds Ratio (95% CI)	Adjusted Odds Ratio (95% CI)*
o malignancy			1.00	1.00
Men	1279	1038		
Women	1552	1024		
l malignancies† Lung	34	1	24.8 (3.4-181.1)	22.2 (3.6-136.1)
Hematological malignancies Non-Hodgkin lymphoma	13	1	9.5 (1.2-72.4)	10.2 (1.4-76.9)
Hodgkin disease	7	0	ND	ND
Leukemia	5	0	ND	ND
Multiple myeloma	12	0	ND	ND
All hematological cancer	37	1	26.2 (3.6-191.4)	28.0 (4.0-199.7)
Gastrointestinal malignancies Bowel	46	2	16.8 (4.1-69.1)	16.4 (4.2-63.7)
Pancreas	2	0	ND	ND
Stomach	2	0	ND	ND
Esophagus	2	0	ND	ND
All gastrointestinal cancer	52	2	18.9 (4.6-77.8)	20.3 (4.9-83.0)
Urinary/prostate malignancies Kidney	8	1	5.8 (0.7-46.6)	6.2 (0.8-46.5)
Bladder	10	0	ND	ND
Prostate‡	25	6	3.4 (1.4-8.3)	2.2 (0.9-5.4)
Female malignancies Breast‡§	43	8	3.5 (1.7-7.6)	4.9 (2.3-10.5)
Cervix‡	5	1	3.3 (0.4-28.3)	2.9 (0.3-25.3)
Ovarium‡	7	2	2.3 (0.5-11.1)	3.1 (0.6-15.3)
Endometrium‡	4	0	ND	ND
Brain	11	1	8.0 (1.0-62.1)	6.7 (1.0-45.4)
Skin (melanoma, squamous) cell	15	3	3.6 (1.1-12.6)	3.8 (1.1-12.9)
Ear, nose, and throat	6	3	1.5 (0.4-5.8)	1.6 (0.4-6.4)
Other	18	2	6.6 (1.5-28.3)	6.9 (1.6-29.6)

Blom et al, JAMA 2005

Table 1 Incidence of thromboembolic complications in hematologic malignancies.

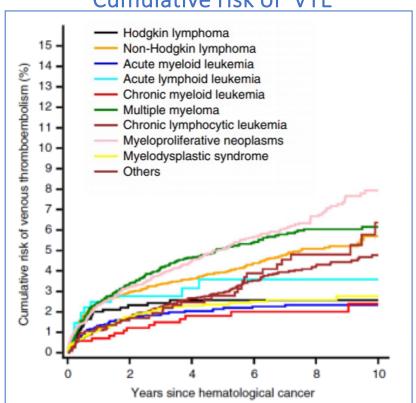
Disease	Overall incidence	Reference
MGUS	6%	Sallah et al. [27]
	3%	Kristinsson et al. [29]
Myeloma	10%	Skralovic et al. [28]
	10%	Barlogie et al. [31]
Lymphoma	5-10%	Rickles et al. [2]
High-grade non-Hodgkin lymphoma	11%	Mohren et al. [22]
	7,5%	Sgarabotto et al. [71]
Low-grade non-hodgkin lymphoma	6%	Mohren et al. [22]
	3%	Sgarabotto et al. [71]
Hodgkin lymphoma	7%	Mohren et al. [22]
	3%	Sgarabotto 2008
Myelodysplastic syndromes	6,5%	Sgarabotto et al. [71]
Acute leukemia	6%	De Stefano et al. [6]
	2%	Ziegler et al. [4]
	12%	Mohren et al. [5]

Elice & Rodeghiero, Thromb Res 2012

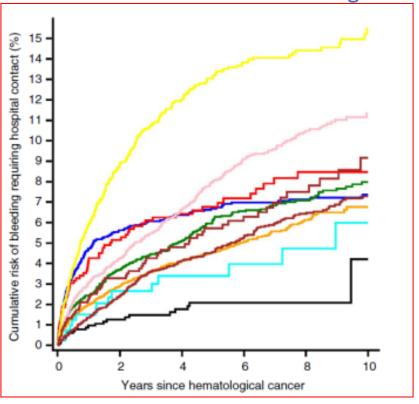
Hematological Cancers: Risk of TE and Bleeding Outcome

- ➤ Danish population-based cohort study (2000-2013) 32141 hematological cancers adult patients; each patient was matched with up to 5 controls.
- > 10 years absolute risk for Thrombo-embolism or Bleeding complications 19%
- ➤ VTE 5.2%; MI 3.3%; Ischemic Stroke 5.2%; Bleeding- 8.5%
- Hazard ratios compared to general population

```
MI- 1.36 (1.25-1.49)
```


Stroke – 1.22 (1.12-1.33)

VTE – 3.37 (3.13-3.64)


Bleeding – 2.39 (2.26-2.53)

Cumulative incidence curves of VTE and bleeding requiring hospital contact, by hematological cancer type

Cumulative risk of VTE

Cumulative risk of Bleeding

Population-based cohort study, N=32 141

Pathogenesis of clotting activation in hematologic malignancies

- Tumor cell-derived procoagulant, fibrinolytic and proteolityc and inflammatory cytokines
- Cytotoxic therapies
- Infection complication

Virchow's triad Risk factor are cumulative

VENOUS STASIS

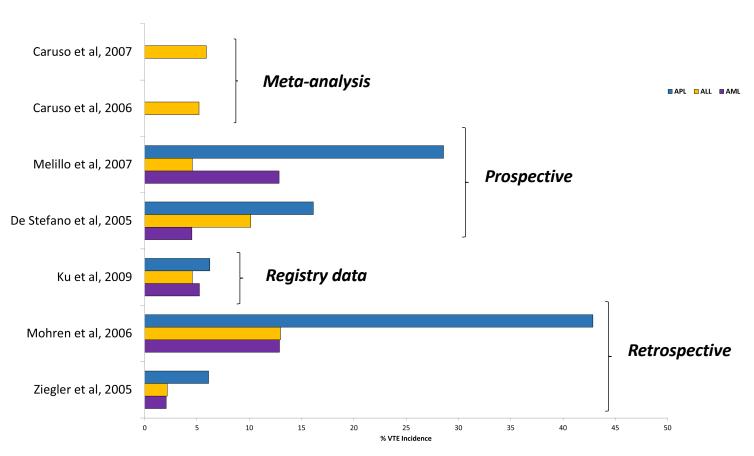
Obesity
Immobility
Chronic Heart Disease

Age >40

VASCULAR INJURY
Reccurent VTE
Surgery

Cancer treatment

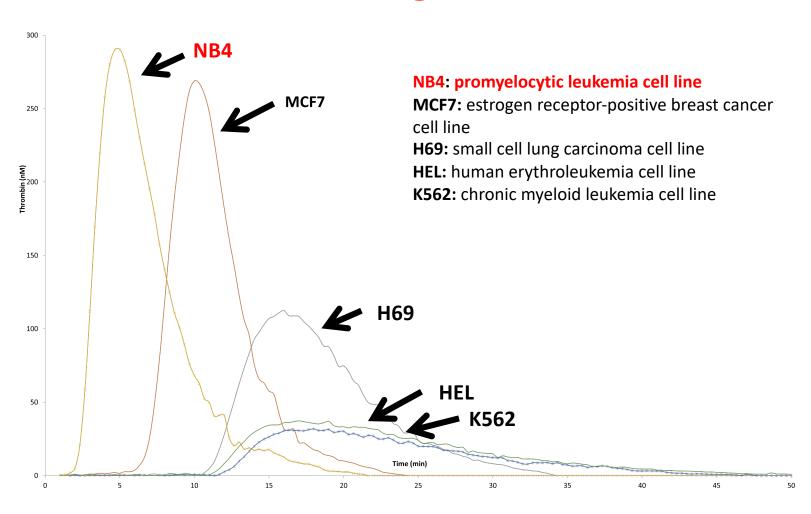
Trauma
Venipuncture
Atherosclerosis
Iv drug administration

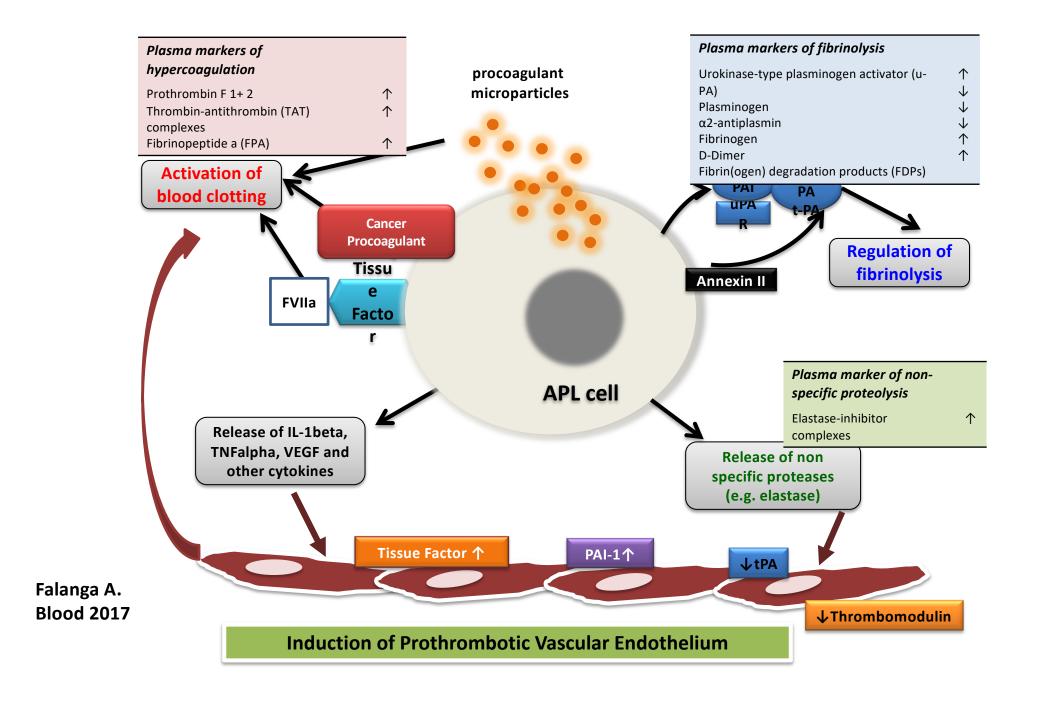

HYPERCOAGULABILITY

Malignancy

Bleeding disorders Hereditary risk factors

Anderson FA, Jr.Spencer, Circulation, 2003: 107;9-16

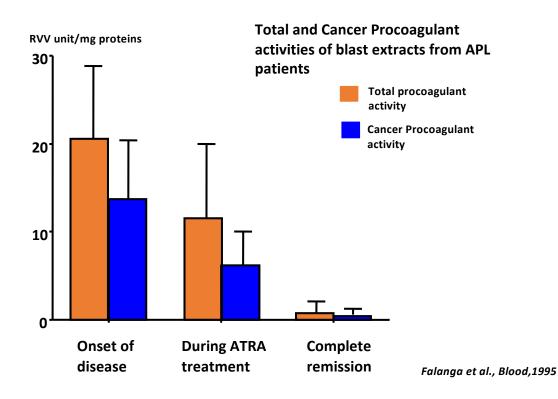

Incidence of venous thromboembolism (VTE) evaluated in clinical studies of patients with Acute Leukemias



Risk of Thrombosis in Acute Leukemia

- ➤ Thrombotic events 6.3%
- > 80% VTE; 20% arterial events
- At diagnosis 13/379 3.4%
- \rightarrow ALL 1.4%; APL 9.6%; non-M3 AML 3.2%

Human tumor cells induce thrombin generation

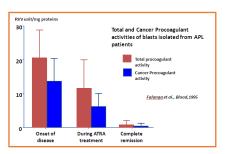


Oncogenic events & the cellular procoagulant activity

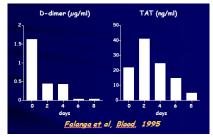
The example of Acute Promyelocytic Leukemia (APL)

- In APL cells the typical *PML/RARa* genetic lesion is associated with overexpression of procoagulant activity (i.e. Tissue Factor) and the occurrence of a severe coagulopathy.
- With the leukemic cell differentiation into mature granulocytes induced by all-trans-Retinoic Acid (ATRA) therapy, targeting the molecular lesion, the cellular procoagulant activity is lost and the coagulopathy resolves.

ATRA reduces acute promyelocytic leukemia cell procoagulant activities "in vivo"



Differentiation of leukemic blasts


ATRA

Correction of thrombohemorrhagic syndrome

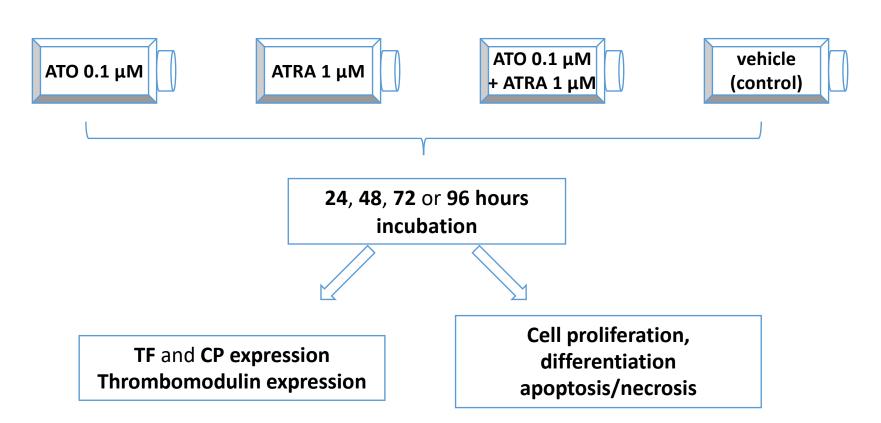
↓ procoagulant activity of APL cells

↓ plasma hypercoagulation markers

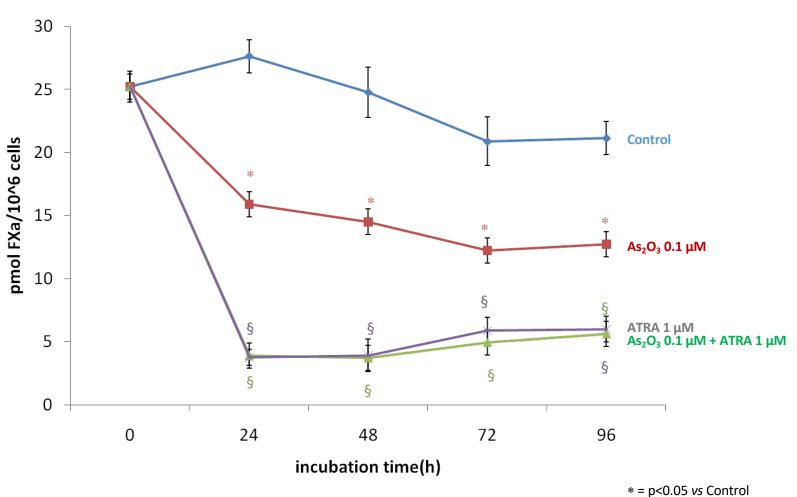
Remission Induction

However, the rate of early deaths due to the thrombohemorrhagic syndrome is still relevant in this disease

The characterization of the coagulopathy and the identification of predictive markers remain a critical issue


Arsenic Trioxide (ATO)

- ATO, another agent effective in the cure of APL, including the APL resistant to ATRA, also reduces the procogulant activities expression of APL blast cells in vitro and in vivo.
- ATO exerts a dose-dependent dual effects on APL cells:
 - at low concentrations (0.5 μM), induces partial differentiation by degrading the PML/RAR-alpha fusion protein;
 - > at relatively high concentrations (0.5-2.0 μM), it triggers apoptosis.
- ATO treatment can induce rapid loss of membrane procoagulant activity and TF mRNA leading to beneficial effect on the coagulopathy of APL.
- However, mechanisms by which ATRA or ATO lead to the rapid resolution of coagulopathy need further definition.


Experimental system

APL NB4 cell line:

- Has the t(15;17) chromosomal translocation
- Expresses chimerical protein PML-RARα
- Is sensitive to ATRA-induced differentiation

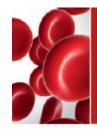
ATO and ATRA affects Tissue Factor activity in NB4 cells

* = p<0.05 vs Control § = p<0.01 vs Control

Table 1. Incidence of venous thromboembolism in adult acute lymphoblastic leukemia

Reference	Design	Number of patients	Thrombosis in cidence	Site	Risk factors
De Stefano et al. [68]	Retrospective	69	1.4% at diagnosis, 10.6% at 6 months	DVT of legs, DVT of arm, CNS thrombosis	L-ASP
Guzman-Uribe et al. [69]	Retrospective	83	8.4%	DVT, CVC,	L-ASP (nonsignificant)
Couturier et al. [70]	Prospective	708	3.1%	Only CNS thrombosis	L-ASP, low level of AT, male, T-phenotype
Musgrave et al. [71]	Retrospective	3126	1.4%	Only CNS thrombosis	L-ASP, immobility, infection, dehydration
Ku et al. [72]	Retrospective	2482	4.5%	DVT	CVC, older age, comorbidity

AT, antithrombin; CNS, central nervous system; CVC, central venous catheter; DVT, deep-venous thrombosis; L-ASP, L-asparginase.



Check for updates

Regular Article

LYMPHOID NEOPLASIA

CME Article

Thromboembolism prophylaxis in adult patients with acute lymphoblastic leukemia treated in the GRAALL-2005 study

Corentin Orvain,¹⁻³ Marie Balsat,⁴ Emmanuelle Tavernier,⁵ Jean-Pierre Marolleau,⁶ Thomas Pabst,^{7,8} Patrice Chevallier,^{2,9} Noémie de Gunzburg,¹⁰ Victoria Cacheux,¹¹ Françoise Huguet,¹² Sylvain Chantepie,¹³ Denis Caillot,¹⁴ Yves Chalandon,^{8,15,16} Jamilé Frayfer,¹⁷ Caroline Bonmati,¹⁸ Véronique Lheritier,¹⁹ Norbert Ifrah,¹⁻³ Hervé Dombret,²⁰ Nicolas Boissel,^{20,*} and Mathilde Hunault-Berger,^{1-3,*} for the Group for Research on Adult Acute Lymphoblastic Leukemia (GRAALL)

ownloaded to

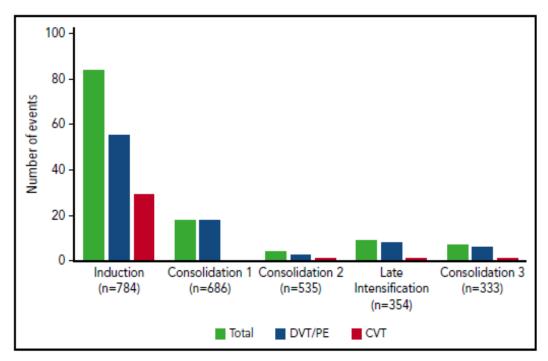
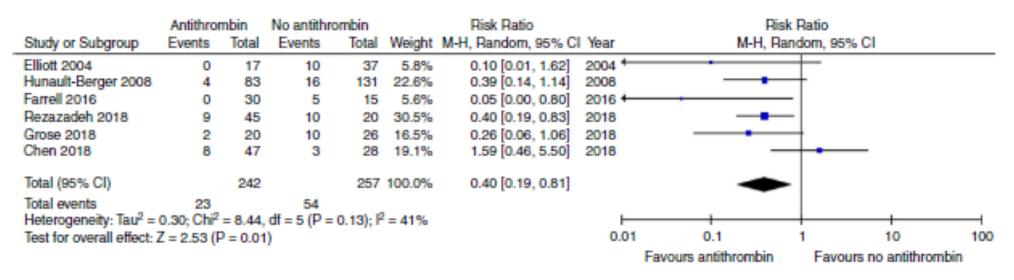



Figure 1. Number of thrombosis per treatment phase. Seven patients developed VTE at different sites (3 patients with DVT and CVT, 2 with PE and CVT, 1 with DVT and PE during induction therapy, and 1 with DVT and PE during consolidation), and 3 patients with DVT experienced relapse of DVT during a subsequent phase of treatment.

The prevention and management of asparaginaserelated venous thromboembolism in adults: Guidance from the SSC on Hemostasis and Malignancy of the ISTH

In the majority of studies, the threshold for antithrombin repletion was either 50% to 60% (with a threshold of 70% in two studies). There were fewer VTE in the antithrombin cohorts in all but one study, yielding an overall summary risk ratio of 0.40 (95% CI, 0.19-0.81) by a random effects model.

The prevention and management of asparaginaserelatedvenous thromboembolism in adults: Guidance from the SSC on Hemostasis and Malignancy of the ISTH

Despite the lack of randomized data, based on current best available evidence on antithrombin monitoring and repletion in adults with ALL, we formulated the following guidance statements:

- 1. Based on an approximate 60% reduction in VTE when implementing an antithrombin repletion regimen, we suggest monitoring antithrombin levels during asparaginase therapy.
- 2. Where the decision has been made to monitor antithrombin levels, we suggest measurement on a weekly basis for the duration of asparaginase therapy.
- 3. We suggest <u>infusion of antithrombin concentrate for levels below 50% to 60%</u>. The optimal antithrombin concentration is not established but we suggest a repletion target in the 80% to 120% range.

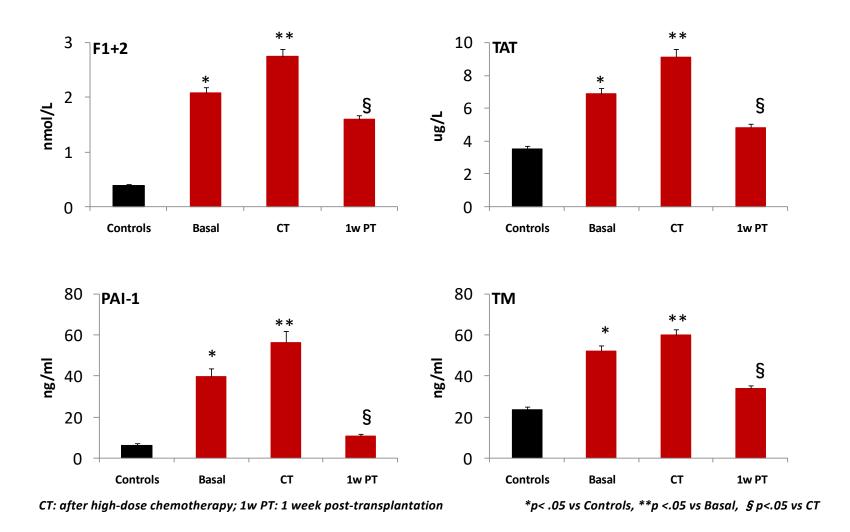
The prevention and management of asparaginaserelated venous thromboembolism in adults: Guidance from the SSC on Hemostasis and Malignancy of the ISTH

Despite limited data regarding efficacy, due to the high rate of VTE in adults and existing guidelines regarding thromboprophylaxis during hospitalization, we formulated the following guidance statements:

- 1. We suggest LMWH thromboprophylaxis during induction phase of ALL therapy that includes asparaginase.
- 2. <u>Outpatient LMWH thromboprophylaxis is suggested in those patients considered especially high risk due to concomitant risk factors</u> such as obesity or prior history of thrombosis (during induction and intensification phases of therapy).
- 3. We suggest withholding LMWH thromboprophylaxis in cases of severe thrombocytopenia (ie, platelet count $< 30 \times 109/L$).29

BACKGROUND

Table 1. Characteristics and Incidence Rates of VTE in 25 studies published between 2000 and 2019.

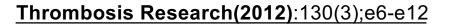

First Author	Year	Country	Ref.	Type of Study	No. Pts	Histologies	Median Age	Identification of Events	Median Time	No. VTE	Cumulative Incidence
Sanfilippo	2016	USA	25	registry	2730	DLBCL FL	64	ICD codes	28.4 mo.	246	DLBCL 10% at 6 mo.
Santi	2017	Italy	22	clinical trials	1717	NHL	57	pharmacovigilance	6 mo.	53	2.9% at 6 mo.
Antic	2016	Serbia	7	retrospective single center	1820	NHL, HL, CLL	53	records review	9 mo,	73	5.3% during therapy
Rupa-Matysek	2018	Polonia	12	retrospective single center	428	DLBCL, HL	50	records review	37 mo.	64	15%
Rupa-Matysek	2018	Poloria	13	retrospective single center	428	DLBCL, HL	50	records review	37 mo.	64	15%
Hohaus	2018	Italy	8	retrospective single center	857	NHL, HL	51	records review	15 mo.	95	11.1% at 9 mo.
Park	2012	Korea	30	prospective single center	686	NHL, HL, CLL	51	records review	21.8 mo.	54	7.9% at 1 yr
Mohren	2005	Germany	14	retrospective single center	1038	NHL, HL,	59	records review	n.a.	80	7.7%
Zhou	2010	USA	15	retrospective single center	422	NHL, HL	57	records review	2 yrs	80	17.1% at 2 yrs
Mahajan	2014	USA	27	population-based databases	16755	NHL	n.a.	ICD codes	2 yrs	670	4% at 2 yrs
Lund	2015	Denmark	28	population-based databases	10375	NHL, HL	n.a.	ICD codes	2 yrs	355	3.9% at 2 yrs
Caruso	2010	International	23	meta-analysis	18018	NHL, HL	n.a.	published studies	n.a.	1149	6.4% during therapy
Lim	2016	Korea	6	prospective single center	322	DLBCL	56	not specified	41.9 mo.	34	10.6% at 1 yr
Komrokji	2006	USA	16	retrospective single center	211	DLBCL	57	records review	n.a.	27	12.7% during therapy
Borg	2016	Denmark	6	retrospective single center	289	DLBCL	67	ICD codes	16 mo.	32	11.1% at 2 yrs
Yokoyama	2012	Japan	19	retrospective single center	142	DLBCL	63	records review	n.a.	15	11% during therapy
Goldschmidt	2003	Israel	18	retrospective single center	42	PCNSL	61	records review	n.a.	25	59.5% at 3 mo.
Byun	2019	Korea	20	re trospective multicenter	235	PCNSL	63	records review	21 mo.	33	11.7% at 1 yr
Lekovic	2010	Serbia	10	retrospective single center	42	PMBCL.	34	records review	47 mo.	15	35.7% at 6 mo.
Borchmann	2019	Germany	9	clinical trials	573	HL	36	trial data	12 mo.	173	3.3%
Gebhart	2014	Austria	21	re trospective multicenter	70	SMZL	n.a.	records review	n.a.	9	13%
Hulterantz	2014	Sweden	29	population-based databases	2190	WM/LPL	74	ICD codes	10 yrs	92	2.1% at 1 y
Gangaraju	2019	USA	26	registry	734	NHL	49	patient questionaire	8.1 yrs	58	8.1% at 10 yrs
Yamshon	2018	International	24	meta-analysis	1433	NHL	66	published studies	n.a.	77	4.5% at 6 mo.
Zhang	2016	China	11	retrospective single center	565	lymphoma	n.a.	not specified	n.a.	40	7.1% PICC-related

Abbreviations: No., number: pts, patients; VTE, venous thromboembolism; mo., months; yrs, years; DBCL, diffuse large B cell lymphoma; FL, follicular lymphoma; NHL, Non-Hoddgkin lymphoma; CLL, chronic lymphoma; SMZL, splenic marginal zone lymphoma; PCNSL, primary central nervous system lymphoma; PMBCL, primary mediastinal B cell lymphoma; WM, Waldenstroems macroglobulinemia; LPL, lymphoplasmocytic lymphoma; ICD, international classification of diseases; IR, incidence rate; CI cumulative incidence; PICC, peripherally-inserted central catheter.

The hypercoagulable state in Lymphoma

- Non-Hodgkin and Hodgkin Lymphomas carry a significant risk for venous and arterial thrombosis, particularly during chemotherapy treatments
- However, hemostatic alterations underlying a hypercoagulable condition, even in the absence of overt thrombosis, are commonly found in patients with lymphomas

The hypercoagulable profile in patients with NHL



Falanga A et al, Cancer Invest. 2008

Incidence, risk factors and clinical features of venous thromboembolism in newly diagnosed lymphoma patients: Results from a prospective cohort study with Asian population

Lee Chun Park¹, Sook-young Woo, Seonwoo Kim, Hyejin Jeon, Young Hyeh Ko, Seok Jin Kim, Won Seog Kim

¹Department of Medicine, Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul, Korea.

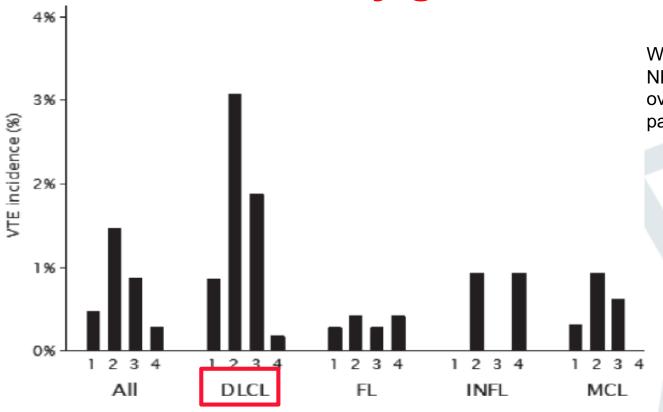
- -cohort of 686 lymphoma pts (NHL + HL)
- -VTE incidence 7.9% (NHL > HL)
- -median time of VTE development: 1.97 months
- -risk factors for VTE:
 - age > 60 years
 - CNS involvement
 - chemotherapy (no VTE in untreated pts)

The impact of VTE on mortality in lymphoma patients

Analysis of 16,755 NHL patients (significant predictors of death within 2 years)

- diagnosis of acute VTE,
- advanced stage of disease,
- · increased number of comorbidities,
- age over 75,
- intermediate- or high-grade histopathology.
- This study also reported that as the time between the lymphoma diagnosis and VTE diagnosis increased, the effect of VTE on death increased as well (HR = 1.7 95%CI:1.5-1.9 for VTEs < 6 months; HR= 6.5 95%CI:4.7-8.9 for VTEs 12-24 months)

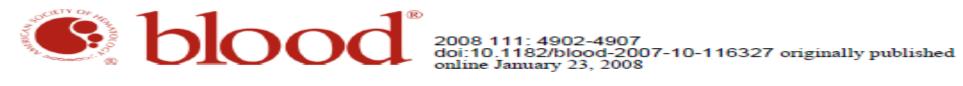
Mahajan A: Thromb Res 2014:S23-8.



VTE incidence by grade and NHL histotype

We stratified VTE incidence according to NHL histotype, observing an increased overall incidence of VTE episodes in patients affected by DLBCL

Santi et al, Thromb Haemost 2017



RISK ASSESSMENT MODELS

Development and validation of a predictive model for chemotherapy-associated thrombosis

Table 1. Khorana Score

ancis

Khorana Score	Risk score
Site of cancer	
very high risk (stomach, pancreas)	2
high risk (lung, lymphoma, etc)	1
PLTs ≥ 350 x 10 ⁹ /I pre-chemo	1
Hb < 10 g/dl or use of r-EPO	1
WBC > 11 x 10 ⁹ /l pre-chemo	1
BMI 35 kg/m ² or more	1
Low risk	0 points
Intermediate risk	1-2 points
High risk	≥ 3 points

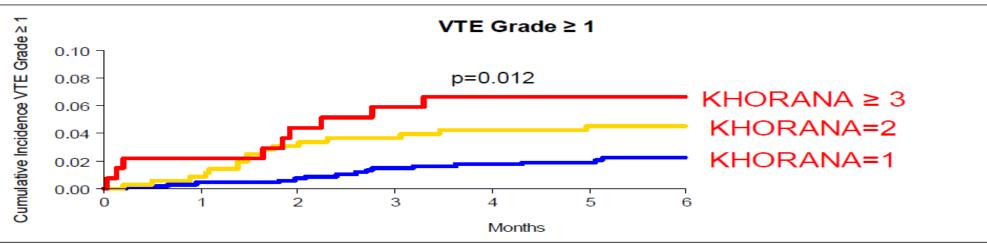

validated in solid tumors for risk of VTE development

Table 8. Cumulative inc	idence of VTE of any grade	at 6 months
VTE grade ≥ 1	Cumulative incidence at	Gray test p
	6 months (CI 95%)	
Total pts (n° = 1717)	2.9% (2.1 – 3.8)	-
Pts with available KS (n° = 1189)	3.4% (2.4 – 4.4)	-
KS = 1 (n° = 689)	2.2% (1.1 – 3.3)	
KS = 2 (n° = 359)	4.5% (2.3 – 6.7)	p = 0.012
KS ≥ 3 (n° = 141)	6.6% (2.4 – 10.8)	

Table 9. Cumulative ir	ncidence of VTE grade ≥ 3 at	6 months
VTE grade ≥ 3	Cumulative incidence at	Gray test p
	6 months (CI 95%)	
Total pts (n° = 1717)	1.1% (0.6 – 1.6)	-
Pts with available KS (n° = 1189)	1.3% (0.6 – 1.9)	•
KS = 1 (n° = 689)	0.7% (0.1 – 1.4)	p = 0.048
KS ≥ 2 (n° = 500)	2.0% (0.8 – 3.3)	

Santi et al, Thromb Haemost 2017

Arterial and venous thrombosis in MM during follow up

Table 2. HRs and 95% Cls for selected arterial and venous thrombosis among 18 627 MM patients versus 70 991 matched controls

	1	-year follow-	up	5	-year follow-	up	10	year follow	v-up
Category	MM patients	Controls	HR* (95% CI)	MM patients	Controls	HR* (95% CI)	MM patients	Controls	HR* (95% CI)
Thrombosis by location			* * * * * * * * * * * * * * * * * * * *						
DVT	252	146	8.0 (6.5-9.9)	459	581	5.2 (4.6-5.8)	528	1035	4.6 (4.1-5.1)
PE	152	97	7.3 (5.6-9.4)	263	403	4.2 (4.1-5.1)	304	714	3.8 (3.3-4.4)
Coronary artery disease†	537	1137	2.2 (2.0-2.5)	1079	4176	1.8 (1.6-1.9)	1263	6756	1.7 (1.6-1.8)
Cerebrovascular‡	203	655	1.5 (1.3-1.8)	475	2830	1.2 (1.1-1.3)	601	4956	1.2 (1.1-1.3)
Type of thrombosis									
Arterial thrombosis§	712	1699	1.9 (1.8-2.1)	1471	6413	1.5 (1.4-1.6)	1751	10 490	1.5 (1.4-1.5)
Venous thrombosis	384	227	7.5 (6.4-8.9)	678	904	4.6 (4.1-5.1)	777	1602	4.1 (3.8-4.5)
Any thrombosis (combined)			2000						
All patients	1065	1892	2.6 (2.4-2.8)	2039	7073	1.9 (1.8-2.0)	2384	11 558	1.8 (1.7-1.9)
Males	612	1163	2.5 (2.2-2.7)	1156	4159	1.8 (1.7-1.9)	1338	6653	1.8 (1.7-1.9)
Females	453	729	2.8 (2.5-3.2)	883	2914	2.0 (1.8-2.1)	1046	4905	1.9 (1.8-2.0)

^{*}Adjusted for age, sex, and calendar period at diagnosis.

Krinstinnson et al. Blood. 2010;115(24):

[†]Angina pectoris, unstable angina, and myocardial infarction.

[‡]Cerebral infarction, transient ischemic attack, and cerebral hemorrhage.

[§]Angina pectoris, unstable angina, myocardial infarction, transient ischemic attack, and cerebral infarction. ||DVT and PE.

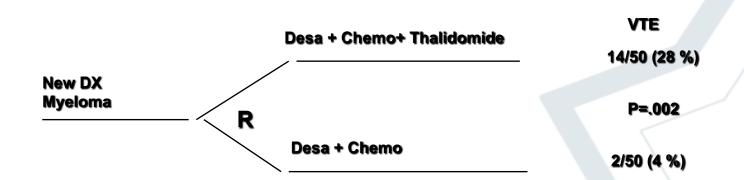
Risk factors for VTE in MM

Patient related	Disease r	elated	Treatment related
	MC related	MC unrelated	
Age	Hyperviscosity	Increased MP-TF	CVC
Previous VTE	Thinner fibrin fibers	Increased Fbg	Doxorubicin
Obesity	LAC-like activity	Increased VWF	Dexamethasone
Immobility	PC inhibition	Increased FVIII	Thalidomide
Major illnesses	PS inhibition	Decreased PS	Lenalidomide
Limb paresis		Acquired APC-Res	Erythropoietin
orthopedic surgery		Hypofibrinolysis	
		Increased PAI-1	

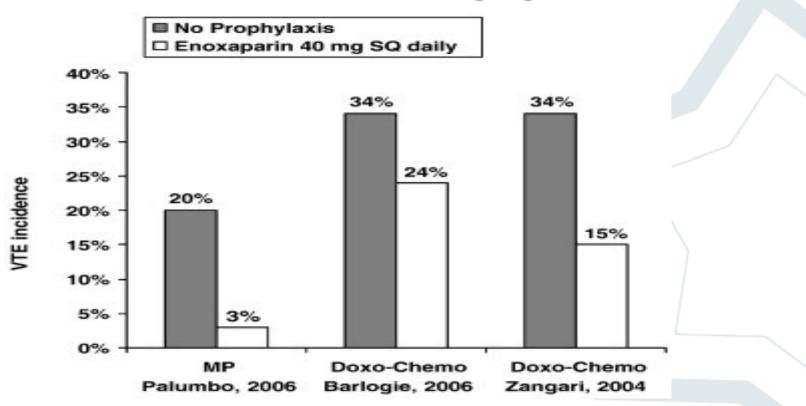
Abbreviations: APCRes, activated protein C-resistance; CVC, central venous catheter; Fbg, fibrinogen; FVIII, factor VIII; LAC, lupus anucoagulant; MP-TF, microparticle-associated tissue factor; MC, monoclonal component; PAI, plasminogen activator inhibitor; PC, protein C; PS, protein S; VTE, venous thromboembolism; VWF: von Willebrand factor.

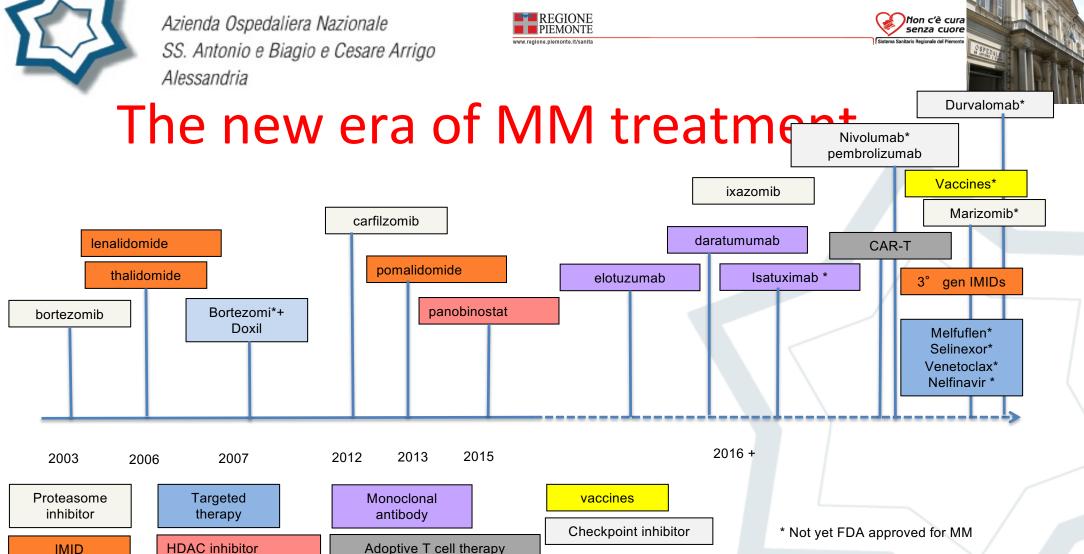
Note: Inherited thrombophilia is not listed among the patient-related risk factors given the uncertainty of association with VTE in this setting.

De Stefano et al, Semin Thromb Hemost 2014;40:338-347



THALIDOMIDE AND VTE IN MYELOMA


Zangari M Blood 2001,98:1614-1615



Incidence of VTE with and without LMWH in NDMM patients receiving thalidomide-containing regimens

Khaled M., Thrombosis Research, Volume 123, Issue 5, March 2009, Pages 679-686

4

Thrombosis in multiple myeloma: risk stratification, antithrombotic prophylaxis, and management of acute events. A consensus-based position paper from an ad hoc expert panel.

* Valerio De Stefano¹, * Alessandra Larocca², Monica Carpenedo³, Michele Cavo⁴, Francesco Di Raimondo⁵, Anna Falanga^{6,7}, Massimo Offidani⁸, Maria Teresa Petrucci⁹, Marco Ruggeri¹⁰, Roberto Mario Santi¹¹, Giovanni Barosi¹².

Haematologica, 2022

Recommendations

All MM patents candidate to an active anti-myeloma treatment should be considered for thromboprophylaxis.

Type, intensity and duration of thromboprophylaxis should be tailored according to the baseline individualized thrombotic and hemorrhagic risk profile.

Severe thrombocytopenia (PLT < 20.000/mcl), active bleeding, congenital bleeding disorders (hemophilia, von Willebrand disease, severe deficiency of coagulation factors), and acquired coagulopathy that cannot be corrected (e.g. severe hepatic disease), are absolute contraindications to thromboprophylaxis.

Mild thrombocytopenia (PLT < 50.000/mcl), history of bleeding, acquired coagulopathy with chance of correction are relative contraindications to thromboprophylaxis.

To ensure an appropriate safe and effective thromboprophylaxis, avoid bleeding risk and potential thrombotic complication, it is recommended to consider the drug-drug interactions of antithrombotic agents and anti-myeloma drugs.

Patient's compliance and patient's preferences should be considered in the choice of thromboprophylaxis, and patients should be adequately informed about his/her thrombotic risk.

Patients at low-risk of thrombosis, i.e. those with an age lower than 75 years, a normal mass body index, without fractures, central venous catheter, co-morbidites and without a planned therapy with IMIDs, should receive no thromboprophylaxis or thromboprophylaxis with low-dose aspirin. The criterion for the choice is the individual hemorrhagic risk.

All other patients should receive thromboprophylaxis with LMWH as first choice.

Patients without other risk factors for thrombosis except for a planned IMiDs-containing therapy and with contraindication or strong aversion to LMWH therapy, or with documented poor compliance to LMWH therapy, could use aspirin as thromboprophylaxis.

Preliminary data on the efficacy and safety of apixaban and rivaroxaban as primary thromboprophylaxis in patients receiving IMiDs are promising. However, there is no strong evidence in favor of DOACs instead of LMWH.

Off-label prescription of apixaban as primary antithrombotic prophylaxis in patients with contraindications to LMWH (e.g. for allergy) should be considered.

	Antithrombotic there	py management †	
	Hold	Continue full	Continue reduced-dose
AC for DVT or PE, n (% of total) [N=115] *	28 (24)	41 (36)	46 (40)
PLT Tx threshold changed, n (%) †	1 (3.6)	24 (58.5)	12 (26.1)
New PLT Tx threshold ‡ (x 10 ⁹ /L), median [IQR]	20 [20-20]	30 [30-30]	27.5 [22.5-30]
VTE, % (95% CI) ¶	7.1 (0.1-20.7)	2.4 (0.2-11.2)	4.3 (0.8-13.2)
Arterial thrombosis, % (95% CI) ¶	3.6 (0.2-15.7)	0 (0)	2.2 (0.2-10.1)
Major bleeding, % (95% CI) \S \P	3.6 (0.2-15.7)	2.4 (0.2-11.2)	4.3 (0.8-13.2)
CRNMB, % (95% CI) § ¶	3.6 (0.2-15.7)	4.9 (0.9-14.7)	8.7 (0.2-15.7)
AC for atrial fibrillation, n (% of total) [N=55]	16 (29)	16 (29)	23 (42)
PLT Tx threshold changed, n (%) †	1 (6.3)	8 (50.0)	1 (4.4)
New PLT Tx threshold ‡ (x 10 ⁹ /L), <i>median [IQR]</i>	20 [20-20]	30 [30-40]	30 [30-30]
VTE, % (95% CI) ¶	0 (0)	0 (0)	0 (0)
Arterial thrombosis, % (95% CI) ¶	0 (0)	0 (0)	0 (0)
Major bleeding, % (95% CI) \S \P	0 (0)	0 (0)	0 (0)
CRNMB, % (95% CI) § ¶	26.1 (7.5-49.9)	18.7 (4.3-41)	0 (0)
APT for any indication, n (% of total) [N=80]	34 (42)	46 (58)	0 (0)
PLT Tx threshold changed, n (%) †	2 (5.9)	16 (34.8)	NA
New PLT Tx threshold ‡ (x 10 ⁹ /L), <i>median [IQR]</i>	10 [10-20]	10 [10-25]	NA
VTE, % (95% CI) ¶	9.1 (2.7-21.9)	0 (0)	NA
Arterial thrombosis, % (95% CI) ¶	0 (0)	2.2 (1.7-10.1)	NA
Major bleeding, % (95% CI) \S \P	0 (0)	0 (0)	NA
CRNMB, % (95% CI) § ¶	3 (0.2-13.6)	9.1 (2.8-19.9)	NA

[†] At study index, defined as first day of concurrent hematological malignancy, indication for antithrombotic treatment and PLT < 50 x 10⁹/L

[‡] Only calculated for patients with a change in PLT Tx threshold at study index †, after the change in threshold

[§] ISTH definition

 $[\]P$ 30-day cumulative incidence (95% CI) with death as a competing risk

^{*} Median days [IQR] from VTE/PE to index = 78 [30-164], 36 [3.5-138] and 30 [10-112] in hold, continue full and reduced groups, respectively AC, anticoagulation; APT, antiplatelet therapy; CI, confidence interval; CRNMB, clinically relevant non-major bleeding; DVT, deep vein thrombosis; IQR, interquartile range; NA, not applicable; PE, pulmonary embolism; PLT, platelet; Tx, transfusion; VTE, venous thromboembolism

HemaSphere

2022

Guideline Article – Consensus based
Open Access

EHA Guidelines on Management of Antithrombotic Treatments in Thrombocytopenic Patients With Cancer

Anna Falanga^{1,2}, Avi Leader^{3,4}, Chiara Ambaglio², Zsuzsa Bagoly^{5,6}, Giancarlo Castaman⁷, Ismail Elalamy^{8,9}, Ramon Lecumberri^{10,11}, Alexander Niessner¹², Ingrid Pabinger¹³, Sebastian Szmit^{14,15}, Alice Trinchero¹⁶, Hugo Ten Cate^{17,18}, Bianca Rocca¹⁹

Correspondence: Anna Falanga (annafalanga@yahoo.com).

EHA GUIDELINES

Platelets (x 10 ⁹ /L)	Venous thromboembolism	Atrial fibrillation	Mechanical heart valve
100			
Grade 1 75	Continue therapeutic-dose anticoag If TP stable *: continue same ant If TP not stable *: use LMWH		
Grade 2		_	_
50			
	If high thrombotic risk † and stable platelet monitoring	TP ‡ expected for weeks to months: consider LM	WH at a 50% reduced-dose & close
	placelet monitoring		
Grade 3 25	Acute VTE §: Prophylactic or 50% dose-reduced LMWH. Consider platelet Tx ** & full dose LMWH if platelets >40-50 x 10 ⁹ /L achieved	TP duration < 3 weeks without high thrombotic risk †: Stop anticoagulation. If ≥3 months grade 3-4 TP anticipated and CHA2DS2Vasc ≥4: Consider LAAO.	Stable ‡ TP 40-50 x 10°/L: VKA with INR = 2, if feasible.
	Acute VTE §: Prophylactic or 50% dose-reduced LMWH. Consider platelet Tx ** & full dose LMWH if	thrombotic risk †: Stop anticoagulation. If ≥3 months grade 3-4 TP anticipated and	Stable ‡ TP 40-50 x 10 ⁹ /L: VKA with INR = 2, if feasible.

Outcomes of VTE in Patients with Hematologic Malignancies compared with Solid Tumors RIETE Study

R. Lecumberri, P. Ruiz Artacho, I. Tzoran, B. Brenner, D. Farge-Bancel, V. Rosa, I. Francisco, L. Hernández-Blasco, J. Trujillo-Santos, M. Monreal, RIETE Investigators.

Outcomes During the Course of Anticoagulation

	Hematologic		Solid tumors			
	malignancies		500000000		Rate ratio	р
	N	Events per 100 patient-years	N	Events per 100 patient-years	(95% CI)	value
Patients, N	1,062		15,632			
Patient-years of treatment	756.19		9,625.86			
Median days (IQR)	150 (92-292)		127 (70-243)			
PE recurrences	19	2.51 (1.51-3.92)	461	4.79 (4.36-5.25)	0.52 (0.33-0.83)	0.003
DVT recurrences	39	5.16 (3.67-7.05)	552	5.74 (5.27-6.23)	0.90 (0.65-1.24)	0.261
VTE recurrences	58	7.67 (5.82-9.92)	1,013	10.52 (9.89-11.19)	0.73 (0.56-0.95)	0.009
iviajor bieeding	43	5.69 (4.12-7.66)	763	7.93 (7.37-8.51)	0.72 (0.53-0.98)	0.017
Gastrointestinal	16	2.12 (1.21-3.44)	338	3.51 (3.15-3.91)	0.60 (0.37-0.99)	0.023
Intracranial	6	0.79 (0.29-1.73)	123	1.28 (1.06-1.53)	0.62 (0.27-1.41)	0.125
Ischemic stroke	7	0.93 (0.37-1.91)	117	1.22 (1.01-1.46)	0.76 (0.36-1.63)	0.241
Myocardial infarction	4	0.53 (0.14-1.35)	43	0.45 (0.32-0.60)	1.18 (0.43-3.30)	0.373
Death	152	20.10 (17.03-23.56)	3,984	41.39 (40.11-42.69)	0.49 (0.41-0.57)	<0.001
Fatal PE	17	2.25 (1.31-3.60)	224	2.33 (2.03-2.65)	0.97 (0.59-1.58)	0.445
Fatal bleeding	4	0.53 (0.14-1.35)	81	0.84 (0.67-1.05)	0.63 (0.23-1.72)	0.180
Disseminated cancer	64	8.46 (6.52-10.81)	2,556	26.55 (25.53-27.60)	0.32 (0.25-0.41)	<0.001

In patients with VTE associated with hematological malignancies, a <u>lower rate</u> of **recurrent VTE**, **major bleeding** and **mortality** is observed compared to patients with solid tumors.

CONCLUSIONS

- MM and DLBCL have a high rate of VTE (>7 %)
- Thromboembolic risk is higher up to 6-12 months after starting chemotherapy
- Absolute risk for bleeding complications is high
- There are no evidence-based recommendation for VTE prophylaxis in patients undergoing anti-neoplastic treatment. Individual evaluation of the risk-benefit ratio considering the individual risks factors is the current strategy
- There are no evidence-based reccomandation for VTE treatment in oncohematology
- Thrombocytopenia represents the most important clinical problem in the management of antithrombotic therapy